

Jurnal Comasie

ISSN (Online) 2715-6265

ANALISIS PERBAIKAN PROSES PRODUKSI TAHU PADA UKM TAHU BERKAH BAROKAH

Dandi Sagita^{1*}, Nofriani Fajrah²

^{1,2}Program Studi Teknik Industri, Universitas Putera Batam **email*: pb200410079@upbatam.ac.id

ABSTRACT

This study aims to analyze and propose improvements to the tofu production process at UKM Tahu Berkah Barokah based on Good Manufacturing Practice (GMP) and Workplace Improvement Strategies and Ergonomics (WISE) standards. Observations revealed several critical non-conformities, including an unclean and poorly maintained factory environment, inadequate sanitation facilities, and low employee awareness of personal hygiene. The average defect rate reached 14.98% per month, or 21,750 pieces out of 145,050 total production. The calculated DPMO value of 37,480 with a sigma level of 3.28 indicates inefficiencies in the process, while the Cpk value of 1.00 falls below the industry standard (≥1.33). Proposed improvements include enhancing workplace cleanliness, providing sanitation and OHS training, implementing production process supervision through documentation and regular audits, and encouraging active employee involvement in workplace innovation. The integration of GMP and WISE approaches is expected to reduce production defects, improve product quality, and create a healthier and more productive working environment on a sustainable basis.

Keywords: Quality, Good Manufacturing Practice, Workplace Innovation, SME, Tofu Production

PENDAHULUAN

Produksi tahu merupakan bagian yang sangat penting dalam industri pengolahan pangan di Indonesia, termasuk di Kota Batam. Berdasarkan data Badan Pusat Statistik (BPS), rata-rata konsumsi tahu di Indonesia pada tahun 2023 mencapai 0,295 kilogram per kapita per minggu, atau sekitar 15,34 kilogram per kapita per tahun. Tingginya angka konsumsi ini mencerminkan bahwa permintaan pasar terhadap produk tahu masih sangat besar dan terus meningkat dari waktu ke waktu. Oleh karena itu, pelaku usaha di sektor pengolahan tahu memiliki peluang yang signifikan untuk memperluas pangsa

pasar dan meningkatkan daya saing produksinya secara berkelanjutan.

Persaingan pada usaha kecil dan menengah di bidang pangan tidak hanya pada jumlah produksi atau merek produk tetapi juga dipengaruhi oleh kualitas produk. Kualitas sebagai faktor pendorong dalam pemasaran untuk memperoleh pangsa pasar yang luas agar dapat menarik pelanggan (Harianja & Fajrah, 2024). Salah satu usaha kecil dan menengah bidang pangan yang juga mengalami persiangan kualitas produk akibat dari proses produksi yang belum menjamin kualitas produk yaitu UKM produsen tahu. Beberapa penelitian terdahulu juga membahas mengenai

Jurnal Comasie

ISSN (Online) 2715-6265

pengendalian kualitas produk tahu yang perlu menjadi perhatian seperti aktivitas proses produksi tahu belum memperhatikan aspek kualitas bahan baku, belum menjaga kualitas kebersihan proses produksi. efisien dalam aktivitas produksi karena masih banyak menghasilkan produk dan belum konsisten dalam cacat pencampuran komposisi bahan baku produksi pada aktivitas sehingga menghasilkan produk yang cacat (Erdi & Haryanti, 2023)(Hilary & Wibowo, 2021).

UKM Tahu Berkah Barokah, salah satu produsen tahu di Batam. menghasilkan sekitar 4.500 - 5.200 pcs tahu ukuran 200 gram per hari. Namun, tingkat cacat produksi yang mencapai 13.80% - 17.89% atau sekitar 630 pcs -810 pcs per hari sehingga menjadi masalah yang signifikan. Dengan total produksi bulanan mencapai 145.050 pcs, jumlah tahu cacat dapat mencapai 21.750 pcs. Kondisi ini menunjukkan perlunya analisis mendalam terhadap proses produksi untuk meningkatkan efisiensi dan kualitas produk tahu yang dihasilkan.

UKM Tahu Berkah Barokah, sebagai salah satu produsen tahu di Kota Batam, memproduksi berbagai jenis tahu seperti tahu putih dan tahu isi. Walaupun telah beroperasi selama beberapa tahun, tantangan terkait kualitas produk dan efisiensi proses produksi masih menjadi kendala yang signifikan. Masalah yang dihadapi UKM Tahu Berkah Barokah adalah kualitas produk tidak konsisten kualitas diinginkan terhadap yang terhadap standar produk tahu UKM Tahu Berkah Barokah. Selain itu, juga terjadi ketidaksesuaian proses produksi yaitu kesalahan dalam pengukuran komposisi bahan baku sehingga menghasilkan produk cacat. Ketidaksesuaian proses produksi yang terjadi juga terhadap pencampuran bahan baku ragi pada bubur kedelai sehingga mengakibatkan produk bau. Selain itu, lingkungan proses produksi yang belum memperhatikan higienitas proses produksi seperti area produksi vand lembab dan tidak lancarnya aliran kotor air juga mempengaruhi kualitas produk tahu.

Dalam konteks persaingan bisnis vang semakin ketat dan tuntutan konsumen akan produk berkualitas, penting bagi UKM Tahu Berkah Barokah untuk mengatasi masalah kualitas dan efisiensi produksi dengan cepat dan efektif. Kualitas rendah produk tahu dihasilkan oleh UKM Tahu Berkah Barokah merupakan permasalahan kritis yang mempengaruhi reputasi usaha dan kepuasan pelanggan. Turunnya kualitas produk dapat mengakibatkan penurunan pelanggan. **lovalitas** serta potensi penurunan pendapatan dan pangsa pasar usaha. Selain itu, kesalahan yang sering terjadi dalam proses produksi, seperti kesalahan dalam pengukuran, pencampuran bahan. dan proses pencetakan tahu. menyebabkan pemborosan waktu, tenaga, dan bahan baku. Kerusakan pada hasil produksi juga mengakibatkan biaya tambahan untuk mengganti atau memperbaiki produk yang cacat, yang pada akhirnya dapat mengurangi profitabilitas perusahaan.

Selain itu, kurangnya pengecekan bahan baku menjadi

Jurnal Comasie

ISSN (Online) 2715-6265

masalah serius dalam proses produksi tahu. Penggunaan bahan baku yang tidak berkualitas atau terkontaminasi dapat menghasilkan produk akhir yang tidak memenuhi standar kualitas dan pangan. dapat keamanan Hal ini menyebabkan dampak yang lebih luas, risiko kesehatan termasuk bagi konsumen akhir dan potensi masalah hukum bagi pemilik usaha.

Berdasarkan kondisi di atas. penelitian ini bertuiuan untuk menganalisis perbaikan proses produksi tahu di UKM Tahu Berkah Barokah. Selain itu. usulan perbaikan dikembangkan untuk meningkatkan efisiensi operasional dan kualitas produk. Dari hasil penelitian ini, diharapkan UKM Tahu Berkah Barokah dapat mengurangi kesalahan produksi. meningkatkan memperbaiki kualitas produk. dan efisiensi proses secara berkelanjutan. Selain itu, penelitian ini diharapkan meningkatkan kepuasan pelanggan dan memperkuat posisi bisnis di pasar yang kompetitif.

KAJIAN TEORI

2.1. Kualitas

Kualitas adalah kemampuan suatu produk atau layanan dalam memenuhi melebihi harapan pelanggan. Menurut (Garvin, 1987), kualitas dapat dikategorikan dalam delapan dimensi. yaitu: kinerja, fitur, keandalan, kesesuaian, daya tahan, kemudahan lavanan. estetika. dan persepsi pelanggan (Fajrah et al., 2019) (Wardana & Fajrah, 2019). Dalam konteks produksi tahu, aspek-aspek ini berkaitan dengan tekstur, warna, ukuran, dan kebersihan produk yang dihasilkan.

2.2. Six Sigma

Metode Six Sigma merupakan suatu teknik yang digunakan untuk mencapai kinerja operasional sebesar 3,4 cacat per juta peluang atau aktivitas (Fajrah et al., 2019). Keunikan Six Sigma terletak pada penekanannya pada pemahaman menyeluruh terhadap fakta, data, dan analisis statistik. disertai dengan manaiemen hisnis perbaikan, dan investasi ulana yang cermat. Pemanfaatan Sigma dapat Six menghasilkan penghematan biaya, peningkatan produktivitas, perluasan pangsa pasar, pengurangan cacat, dan peningkatan kualitas manufaktur atau layanan (Ridwan et al., 2023a). Six Sigma merupakan suatu metode yang saat ini sedang diimplementasikan di seluruh dunia. Penerapan Six Sigma dalam industri manufaktur diharapkan dapat mengurangi kegagalan dalam mencapai target kualitas vang diperlukan dalam proyek konstruksi (Ridwan et al., 2023b).

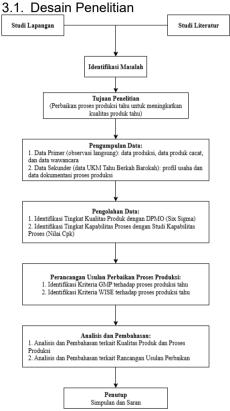
2.3. Good Manufacturing Practice (GMP)

Good Manufacturing Practice (GMP) adalah serangkaian pedoman yang dirancang untuk memastikan produk diproduksi dan dikendalikan secara konsisten dengan standar kualitas tinggi (Suhardi et al., 2020). Tujuan utama GMP adalah untuk meminimalkan risiko dalam produksi farmasi yang tidak dapat sepenuhnya dihilangkan melalui pengujian produk akhir. GMP mencakup semua aspek produksi dari bahan awal,

Jurnal Comasie

ISSN (Online) 2715-6265

fasilitas, dan peralatan hingga pelatihan dan kebersihan staf


2.4. Workplace Innovation and Social Entrepreneurship (WISE)

Workplace Innovation and Social Entrepreneurship (WISE) adalah konsep yang menggabungkan inovasi di tempat kerja dengan kewirausahaan sosial untuk meningkatkan produktivitas, kesejahteraan karyawan, dan keberlanjutan organisasi . WISE berfokus pada menciptakan lingkungan kerja yang inklusif dan adaptif terhadap perubahan

Gambar 1. Kerangka Penelitian

METODOLOGI PENELITIAN

Gambar 2. Desain Penelitian

3.2 Variabel Penelitian

Variabel bebas dari penelitian ini adalah proses produksi tahu dan pengendalian kualitas proses produksi tahu, dimana pelaksanaan proses produksi dan pengendalian kualitas proses produksi tahu akan mempengaruhi kualitas produk. Sedangkan, variabel terikat dari penelitian ini adalah kualitas produk tahu, dimana kualitas produk tahu dipengaruhi oleh

Jurnal Comasie

ISSN (Online) 2715-6265

pelaksanaan proses produksi dan pengendalian kualitas proses produksi tahu.

3.3 Populasi dan Sampel

Populasi dari penelitian ini adalah seluruh produk tahu yang di produksi dan seluruh proses produksi tahu di IKM Tahu Berkah Barokah. Sampel dari penelitian ini diperoleh dengan menggunakan teknik sampling jenuh. Teknik ini digunakan karena seluruh populasi menjadi sampel dari penelitian ini. Berdasarkan teknik pengambilan sampel tersebut, maka sampel dari penelitian ini adalah seluruh produk tahu yang di produksi dan seluruh proses produksi tahu di IKM Tahu Berkah Barokah.

3.4. Teknik Analisis Data

- a. Perhitungan Six Sigma Menghitung DPMO:
 - Mengumpulkan data jumlah cacat (defects) dalam proses produksi tahu.
 - Mengumpulkan data jumlah kesempatan untuk cacat (opportunities for defects) dalam proses produksi tahu.
 - 3. Menghitung DPMO menggunakan rumus :

$$DPMO = \frac{Defects}{Opportunities} \times 1.000.000$$

- b. Perhitungan Studi Kapabilitas Proses (CPK):
 - Mengumpulkan data hasil produksi tahu, seperti dimensi, berat, atau kualitas lainnya.

- Menghitung rata-rata (mean) dan simpangan baku (standard deviation) dari data.
- Menghitung indeks kapabilitas proses (CPK) menggunakan rumus:

$$CPK = min \left(\frac{USL - mean}{3 \ x \ standar \ deviasi} atau \frac{Mean - LSL}{3 \ x \ standar \ deviasi} \right)$$

Dimana USL adalah batas spesifikasi atas (Upper Specification Limit) dan LSL adalah batas spesifikasi bawah (Lower Specification Limit).

- Rancangan Usulan Perbaikan Usulan perbaikan disusun berdasarkan hasil analisis cacat dan kapabilitas proses dengan pendekatan GMP dan WISE. **GMP** berperan dalam memperbaiki standar kebersihan keamanan sedangkan WISE menekankan partisipasi aktif pekerja dalam merancang inovasi tempat kerja yang efisien dan kolaboratif.
- Analisis dan Pembahasan Setelah semua data dianalisis. hasilnya dibahas untuk menilai efektivitas rancangan perbaikan peningkatan kualitas terhadap Pembahasan produksi. mencakup identifikasi keberhasilan metode yang hambatan diterapkan, implementasi di lapangan, dan peluang perbaikan jangka panjang bagi UMKM Tahu Berkah Barokah.

Jurnal Comasie

ISSN (Online) 2715-6265

HASIL DAN PEMBAHASAN

4.1. Pengumpulan Data

Tabel 1 Data Produksi UKM Tahu Berkah Barokah

Hari	Jumlah Produksi (pcs)	Ukuran Tahu Tidak Sama	Tekstur Tahu Lembek	Tahu Kotor	Warna Tahu Sedikit Menguning	Tahu Bersih	Jumlah Produk Cacat (pcs)	Persentase Produk Cacat (%)
1	4800	160	195	245	100	3400	700	14.58
2	5100	140	210	230	90	3760	670	13.14
3	4700	190	230	260	110	3210	700	14.89
4	5200	150	180	270	130	3740	730	14.04
5	4500	210	190	290	115	2890	805	17.89
6	4950	170	220	250	120	3430	760	15.35
7	4600	130	240	210	90	3260	670	14.57
8	4900	190	220	240	110	3380	760	15.51
9	4800	160	215	250	95	3360	720	15.00
10	5200	150	210	270	130	3680	760	14.62
11	5100	180	230	260	120	3520	790	15.49
12	4700	160	195	250	105	3280	710	15.11
13	4500	130	180	220	100	3240	630	14.00
14	4800	210	200	270	125	3190	805	16.77
15	4900	170	225	230	115	3420	740	15.10
16	4600	140	210	200	90	3320	640	13.91
17	4700	190	220	240	100	3200	750	15.96
18	5100	160	210	260	130	3580	760	14.90
19	5000	150	200	240	120	3580	710	14.20
20	4600	140	190	210	95	3330	635	13.80
21	4900	200	220	270	120	3280	810	16.53
22	4800	170	205	250	110	3330	735	15.31
23	4500	130	190	220	90	3240	630	14.00
24	4700	160	210	240	100	3280	710	15.11
25	5200	210	230	270	125	3530	835	16.06
26	5000	170	220	240	110	3520	740	14.80
27	4600	150	200	210	90	3300	650	14.13
28	4700	190	215	250	100	3190	755	16.06
29	5100	160	225	260	120	3570	765	15.00
30	4800	140	210	230	95	3450	675	14.06
Total	145050	4960	6295	7335	3250	101460	21750	451.81
Rata- Rata	4835	165,333	209,833	244,5	108,33	3382	725	1527

Sumber: (Data Penelitian, 2025)

4.2 Perhitungan DPMO

DPMO =
$$\left(\frac{21750}{145050 \times 4}\right) x 1.000.000$$

 $DPMO = \left(\frac{21750}{580200}\right) x 1.000.000$

 $DPMO = 0.037480 \times 1.000.000 = 37.480$

Penjelasan Tiap Komponen:

- 1. Jumlah Cacat = 21.750 Jumlah produk cacat selama satu bulan
- Total Unit Produksi = 145.050

Jurnal Comasie

ISSN (Online) 2715-6265

Total tahu yang diproduksi dalam sebulan.

- 3. Jumlah Peluang Cacat per Unit = 4 Berdasarkan aspek yang diamati sebagai potensi kecacatan dalam satu unit tahu, vaitu:
- 1. Ukuran tidak sama
- 2. Tekstur lembek
- 3. Tahu kotor
- 4 Warna menguning

Dengan pendekatan ini, peneliti dapat membandingkan performa proses produksi UMKM dengan standar industri yang ideal. Hasil perhitungan menunjukkan nilai DPMO sebesar 37.480, yang berarti terdapat sekitar 37.480 cacat dalam setiap satu juta kesempatan. Angka ini mencerminkan bahwa proses produksi tahu masih jauh dari stabil dan efisien, serta memiliki banyak ruang untuk perbaikan. Tingginya nilai ini menunjukkan perlunya intervensi menyeluruh untuk menekan jumlah cacat produksi. Berdasarkan nilai DPMO sebesar 37.480 maka diketahui nilai Sigma berada pada 3,28 Sigma.

Nilai DPMO yang tinggi menandakan ketidakkonsistenan adanya dalam pelaksanaan prosedur operasional standar, baik dari sisi pengawasan, penggunaan mesin, maupun keterampilan pekerja. Hal ini menjadi indikator bahwa sistem produksi belum berjalan secara optimal dan belum memenuhi harapan mutu. Oleh karena itu, peningkatan kualitas produksi diarahkan pada penerapan standar seperti Good Manufacturing Practices (GMP) untuk pengendalian proses, serta pendekatan Workplace Innovation and Social Entrepreneurship (WISE) untuk meningkatkan keterlibatan sumber daya manusia dalam menjaga mutu produksi.

4.3 Perhitungan Tingkat Kapabilitas Proses

Dimana:

•
$$\mu = \frac{\sum xi}{}$$

•
$$\mu = \frac{n}{21750} = 725$$

$$\bullet \quad \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n - 1}}$$

•
$$\mu = \frac{1}{n}$$

• $\mu = \frac{21750}{30} = 725$
• $\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n - 1}}$
• $\sigma = \sqrt{\frac{94496}{30 - 1}} = \sqrt{\frac{94496}{29}} = \sqrt{3258.48} = 57.07$

- $USL = \mu + (Z \times \sigma)$
- $USL = 725 + (3 \times 57,07) = 896,21$
- $LSL = \mu (Z \times \sigma)$
- $LSL = 725 (3 \times 57,07) = 553,79$

$$\begin{split} \text{CPK} &= \text{Min}\left(\frac{\text{USL} - \mu}{3\sigma}, \frac{\mu - \text{LSL}}{3\sigma}\right) \\ \text{CPK} &= \text{Min}\left(\frac{896,21 - 725}{3 \times 57,07}, \frac{725 - 553,79}{3 \times 57,07}\right) \\ \text{CPK} &= \text{Min}\left(\frac{171,21}{171,21}, \frac{171,21}{171,21}\right) \\ \text{CPK} &= \text{Min}\left(1,0,1,0\right) = 1 \end{split}$$

Nilai Cpk = 1,00 menunjukkan bahwa proses produksi tahu sudah berjalan cukup baik, namun belum memenuhi standar kapabilitas industri makanan, yang umumnya mensyaratkan nilai Cpk ≥ 1,33. Hal ini berarti masih ada variasi proses yang perlu dikendalikan untuk menjamin bahwa seluruh produk memenuhi standar mutu yang telah ditentukan.

 $Terbit \textit{ online } pada \ laman \ web \ jurnal: \underline{http://ejournal.upbatam.ac.id/index.php/comasiejournal}$

Jurnal Comasie

ISSN (Online) 2715-6265

Tabel 3 Indikator Rancangan

Usulan Perbaikan					
No	Aspek yang Diperbaiki	Usulan Perbaikan	Hasil yang Diharapkan	Status Implementasi	
1	Kebersihan dan Kualitas	Implementasi Good Manufacturing Practices (GMP): mencakup kebersihan lingkungan kerja, sanitasi alat, dan SOP.	Mengurangi tingkat cacat hingga 15% dan meningkatkan kepercayaan konsumen terhadap produk.		
2	Keterlibatan Karyawan	Implementasi Workplace Innovation and Social Entrepreneurship (WISE): melibatkan karyawan dalam diskusi dan pelatihan rutin.	Peningkatan produktivitas hingga 30% dan kepuasan kerja karyawan.		
3	Stabilitas Proses Produksi	Evaluasi dan perbaikan mesin: kalibrasi alat secara berkala dan penggantian mesin usang.	Mengurangi variasi dalam proses dan meningkatkan efisiensi operasional.		
4	Pengawasan dan Dokumentasi	Penerapan Control Chart dan audit berkala untuk memonitor proses produksi secara realtime.	Menjaga stabilitas hasil perbaikan dan memastikan kualitas konsisten di setiap tahap.		

Sumber: (Data Penelitian, 2025)

a. Usulan Perbaikan

Tabel 4 Tabel Usulan Perbaikan

Tabol 4 Tabol Codiali i Cibalitati						
	Usulan Perbaikan					
Tang	Tanggal :					
Pemeriksa:						
No	Kriteria	GMP	WISE	Sudah	Belum	
1	Kebersihan	Pastikan lantai dan	Periksa partisipasi karyawan			
	Area Produksi	dinding bersih, bebas	dalam menjaga kebersihan			
		kotoran atau tumpahan	harian			
2	Sanitasi	Bersihkan peralatan	Berikan pelatihan sanitasi			
	Peralatan	sebelum dan sesudah	sederhana kepada			
	Produksi	digunakan	karyawan			
3	Kualitas dan	Cek kedelai tidak busuk,	Karyawan aktif melaporkan			

Jurnal Comasie

ISSN (Online) 2715-6265

	Pemeriksaan Bahan Baku	tidak berjamur, dan tidak mengandung benda asing	bahan baku bermasalah
4	Kebersihan Pribadi Karyawan	Karyawan mencuci tangan sebelum bekerja dan memakai pelindung diri	Adakan briefing harian terkait SOP kebersihan
5	Pencatatan Proses Produksi	Isi form harian pencatatan jumlah produksi dan cacat	Karyawan diberi kesempatan mengusulkan perbaikan form pencatatan
6	Penyimpanan dan Penataan Bahan	Simpan bahan di rak tertutup dan kering	Diskusi internal tentang efisiensi tata letak penyimpanan
7	Kondisi Lingkungan Produksi	Pastikan ventilasi cukup dan area tidak lembab	Karyawan menyampaikan ide perbaikan kondisi kerja
8	Pengawasan dan Audit Rutin	Lakukan pengecekan mingguan terhadap proses dan peralatan	Karyawan ikut serta dalam audit kecil internal
9	Pelabelan Produk	Gunakan label produksi yang jelas dan benar	Karyawan dilibatkan dalam evaluasi kesalahan pelabelan
10	Pelatihan dan Pengembangan SDM	Jadwalkan pelatihan kebersihan dan keamanan pangan	Beri ruang partisipasi karyawan dalam pelatihan lintas fungsi

(Sumber: Data Penelitian 2025)

SIMPULAN

Berdasarkan hasil pengumpulan data dan analisis kuantitatif, ditemukan bahwa jumlah produk cacat mencapai 21.750 pcs dari total 145.050 pcs dalam satu bulan, dengan rata-rata persentase 14,98%. Perhitungan cacat sebesar DPMO (Defects Per Million Opportunities) menunjukkan angka sebesar 37.480, yang mengindikasikan bahwa peluang terjadinya cacat dalam proses produksi masih sangat tinggi dan jauh dari target kualitas industri makanan. Sementara itu, nilai CPK (Process Capability Index) yang diperoleh sebesar 1,1, jauh di bawah

standar minimum industri sebesar 1,33. Hal ini membuktikan bahwa proses produksi tahu belum stabil dan memiliki tingkat variasi yang tinggi, terutama pada pengukuran bahan baku dan suhu pemasakan.

Secara keseluruhan, hasil penelitian menunjukkan bahwa kombinasi pendekatan teknis (GMP) dan sosial (WISE) memberikan dampak nyata dalam meningkatkan kualitas, efisiensi, serta keberlanjutan proses produksi. Keberhasilan UKM Tahu Berkah Barokah dalam meningkatkan daya saing sangat bergantung pada penerapan sistem

Jurnal Comasie

ISSN (Online) 2715-6265

produksi yang konsisten, terstandar, dan partisipatif.

DAFTAR PUSTAKA

- Erdi, & Haryanti, D. (2023). Pengaruh Kualitas Bahan Baku dan Proses Produksi terhadap Kualitas Produk di PT Karawang Foods Lestari. Jurnal IKRAITH-EKONOMIKA, 6(1), 199–206.
- Fajrah, N., Putri, N. T., & Amrina, E. (2019). Analysis of the application of quality management systems in the rubber industry based on ISO 9001:2015. IOP Conference Series:

 Materials Science and Engineering 602, 602(1), 1–10. https://doi.org/10.1088/1757-899X/602/1/012039
- Harianja, N. A., & Fajrah, N. (2024). Analisis Pengendalian Kualitas Produk pada Griya Kripik Tempe. *Jurnal COMASIE*, 10(05), 73–82.
- Hilary, D., & Wibowo, I. (2021). Pengaruh Kualitas Bahan Baku dan Proses Produksi terhadap Kualitas Produk PT Menjangan Sakti. *Jurnal Manajemen Bisnis Krisnadwipayana*, 9(1), 1–11. https://doi.org/10.35137/jmbk.v9i1.5
- Ridwan, A., Sonda, A., & Amelia, A. (2023a). Product quality control analysis using the six sigma method. *Journal Industrial Servicess*, 9(1), 53–57. https://doi.org/10.36055/jiss.v9i1.19 044

- Ridwan, A., Sonda, A., & Amelia, A. (2023b). Product quality control analysis using the six sigma method. *Journal Industrial Servicess*, 9(1), 53. https://doi.org/10.36055/jiss.v9i1.19 044
- Suhardi, B., Sari, R. P., & Laksono, P. W. (2020). Perbaikan Proses Produksi IKM Tahu Sari Murni Mojosongo Menggunakan Metode Manufacturing Good Practice (GMP) dan Work Improvement In Small Enterprise (WISE). Jurnal INTECH Teknik Industri Universitas Serang Raya, 6(1), 88-98. https://doi.org/10.30656/intech.v6i1. 2297
- Wardana, S., & Fajrah, N. (2019).
 Pengendalian Kualitas Produk
 Cacat PHX Toshiba Pada PT
 Schneider Electric Manufacturing
 Batam. Jurnal Sistem Teknik
 Industri, 9(3), 70–81.

Dandi Sagita, merupakan mahasiswa Prodi Teknik Industri Universitas Putera Batam.

 $Terbit \textit{ online } pada \ laman \ web \ jurnal: \underline{http://ejournal.upbatam.ac.id/index.php/comasiejournal}$

Jurnal Comasie

ISSN (Online) 2715-6265

Nofriani Fajrah, S.T., M.T., merupakan Dosen Prodi Teknik Industri Universitas Putera Batam. Penulis banyak berkecimpung di bidang Industri