Kinerja Panel Surya dengan Pelacak Matahari Dual Aksis menggunakan Algoritma berbasis Sensor LDR


  • Bernadeta Wuri Harini Universitas Sanata Dharma
  • Petrus Setyo Prabowo Universitas Sanata Dharma
  • Yehezkiel Krisma Universitas Sanata Dharma


Solar panel, Tracking, LDR, Automatic, Two Axes


One source of renewable energy is solar energy. The main component in a solar energy system is the solar panel. To maximize the amount of sunlight harvested by the solar panels, the panels need to track the position of the sun. In this study, a dual-axis tracker is used in the form of a tip-tilt dual-axis tracker. The drivers used are two DC motors equipped with a gear box. The algorithm used is an LDR sensor output based algorithm. Solar panels equipped with solar trackers, even with a simple algorithm using LDR output values, can improve the performance of solar panels. The current generated by a solar panel with a solar tracker is higher than when the solar panel is in a static position. The current difference in the two conditions is the smallest of 16.17 mA and the largest of 544.01 mA. When using a solar tracker, the output power of the solar panel is more than 5.32 W, while when it is fixed, the power of the solar panel is small, even reaching 0.25 W. The output voltage of the solar panel is more than 13 V, while when it is fixed, the voltage of the solar panel is drops to below 13 V, which is 12.81 V.


Ahmed, A. J., & Khan, S. N. (2014). Performance evaluation of solar panel and proposed new algorithm of solar tracking system. 2014 2nd International Conference on Green Energy and Technology, ICGET 2014, September, 9–13.

Ardina, G. B. (2019). Rancang Bangun Dual Axis Solar Tracker Pembangkit Listrik Tenaga Surya Berbasis Mikrokontroler Arduino Uno. Seminar Hasil Elektro S1 ITN Malang, 1–11.

Barsoum, N., & Vasant, P. (2010). Transaction in Controllers and Energy SIMPLIFIED SOLAR TRACKING PROTOTYPE. June.

Bollipo, R. B., Mikkili, S., & Bonthagorla, P. K. (2020). Critical Review on PV MPPT Techniques: Classical, Intelligent and Optimisation. IET Renewable Power Generation, 14(9), 1433–1452.

Calavia, M., Perié, J. M., Sanz, J. F., & Sallán, J. (2010). Comparison of MPPT strategies for solar modules. Renewable Energy and Power Quality Journal, 1(8), 1440–1445.

Hashim, Y. (2020). Design of Arduino-Based Dual Axis Solar Tracking System. 4(2), 129–133.

Mohanapriya, V., Manimegalai, V., Praveenkumar, V., & Sakthivel, P. (2021). Implementation of Dual Axis Solar Tracking System. IOP Conference Series: Materials Science and Engineering, 1084(1), 012073.

Namekar, S., & Dwivedi, V. (2020). Efficiency of Solar Panel 1. 6(12), 285–287.

Nguyen, N. (2016). Nam Nguyen Solar Tracking System Title Number of Pages Date. May.

Noersena, A. (2020). Optimalisasi Penyerapan Energy Solar Cell Non Stasioner Untuk Masyarakat Pesisir Menggunakan Metode Perturb and Observe. Jurnal EECCIS, 14(2), 77–81.

Patel, K., Borole, S., Ramaneti, K., Hejib, A., & Raja Singh, R. (2020). Design and implementation of Sun Tracking Solar Panel and Smart Wiping Mechanism using Tinkercad. IOP Conference Series: Materials Science and Engineering, 906(1).

Pratama, R. A., Pangaribuan, P., & Susanto, E. (2018). Perancangan Sistem Kendali Posisi Panel Surya Dua Dimensi. 5(3), 4136–4143.

Wei, X., Yao, P., & Xie, Z. (2020). Comprehensive Optimization of Energy Storage and Standoff Tracking for Solar-Powered UAV. IEEE Systems Journal, 14(4), 5133–5143.

Yuan, K. Z., & Engineering, E. (2021). Design And Development of an Microcontroller Based Automatic Dual Axis Solar Radiation Tracker Turkish Journal of Computer and Mathematics Education Research Article. 12(12), 3149–3156.