Peningkatan Efisiensi Distilasi Air Energi Surya Jenis Bak Menggunakan Pengapung Silinder Berkain

Authors

  • Alexander Franclean Universitas Sanata Dharma
  • FA. Rusdi Sambada Universitas Sanata Dharma

Keywords:

Distillation, Absorber, Cloth Cylinder, Water mass, Efficiency

Abstract

Basin type solar water distillation has a problem, namely low efficiency. One of the factors causing the low efficiency of basin type solar water distillation is the long evaporation process. The long evaporation process is caused by the large mass of water in the distillation bath. Enlarging the absorber area with materials with capillary properties, such as cloth, is one way to increase efficiency. Enlarging the absorber area can be done by adding a cloth cylinder float. This study aims to increase the efficiency of tub-type solar energy water distillation using a cylindrical cloth float. The study was conducted indoors using a distillation model with an area of ​​0.1 m2. As a solar energy simulator, heating lamps are used. The variables that varied in this study were the mass of water in the tub of 0.6 kg, 1 kg and 1.5 kg, and the number of cloth floats was 3, 6 and 12. Data were collected every 10 seconds for 2 hours using sensors and microcontrollers for each variation. The variables measured were absorber temperature, TA (°C), cover glass temperature, TK (°C) and the volume of water produced, m (litres). The results showed that the variation of the number of floats as many as 12 pieces with a mass of water in the tub as much as 0.6 kg produced the most distilled water, namely 99 ml for 2 hours or 0.47 litres/(hour.m2) with an efficiency of 42%

References

Abdenacer, P. K., & Nafila, S. (2007). Impact of temperature difference (water-solar collector) on solar-still global efficiency. Desalination, 209(1–3 SPEC. ISS.), 298–305.https://doi.org/10.1016/j.desal.2007.04.0

Aburideh, H., Deliou, A., Abbad, B., Alaoui, F., Tassalit, D., & Tigrine, Z. (2012). An experimental study of a solar still: Application on the sea water desalination of Fouka. Procedia Engineering, 33, 475–484. https://doi.org/10.1016/j.proeng.2012.01.1227

Alaian, W. M., Elnegiry, E. A., & Hamed, A. M. (2016). Experimental investigation on the performance of solar still augmented with pin- fi nned wick. DES, 379, 10–15. https://doi.org/10.1016/j.desal.2015.10.010

Arismunandar, W. (1995). Teknologi Rekayasa Surya. Jakarta: Pradnya Paramita.

Astawa, K., Sucipta, M., & Artha Negara, I. P. G. (2011). Analisa Performansi Distilasi Air Laut Tenaga Surya Menggunakan Penyerap Radiasi Surya Tipe Bergelombang Berbahan Dasar Beton. Jurnal Ilmiah Teknik Mesin Cakra, 5(Distilasi), 8.

I Gusti Ketut Puja, F. R. S., & 1. (2012). Unjuk Kerja Distilasi Air Energi Surya. Energi Dan Manufaktur, 5(1), 83.

Jansen, T. J. (1985). Solar Engineering Technology. Michigan: Prentice-Hall.

Mulyanef, M., Burmawi, B., & Muslimin, K. (2015). Pengolahan Air Laut Menjadi Air Bersih Dan Garam Dengan Distilasi Tenaga Surya. Jurnal Teknik Mesin ISSN…,4(1),25–29.Retrievedfrom http://ejournal.itp.ac.id/index.php/tmesin/article/viewFile/276/270

Omara, Z. M., Kabeel, A. E., Abdullah, A. S., & Essa, F. A. (2016). Experimental investigation of corrugated absorber solar still with wick and reflectors

Desalination, 381, 111–116. https://doi.org/10.1016/j.desal.2015.12.001

Pabiban, D., Namas, M., & Sarifudin, K. (2019).Rancang Bangun Sistem Distilasi Surya Tipe Parabolic Untuk Menurunkan Kadar Salinitas Air Laut. Jurnal Ilmiah Flash, 2(2), 131. Purwadianto, D., Kusbandono, W., & Sambada, F. A. R. (2017). Pemodelan dan Analisis Termaldistilasi Air Energi Surya dengan Kaca Penutup Berpenampung Air. 12(2), 104–114. https://doi.org/10.32511/jiflash.v2i2.34

Downloads

Published

2022-01-22

Issue

Section

Articles