PERANCANGAN FRAMEWORK VERIFIKASI QUALITY ASSURANCE PROSES MANUFAKTUR MENGGUNAKAN KEMAMPUAN DETEKSI DAN TINDAKAN KONDISI IRREGULAR

Authors

  • Muhammad Miftahul Abid Institut Teknologi Sumatera
  • Harun Indra Kusuma Universitas Teknologi Nusantara
  • Yessi Nasia Ulfia Politeknik Industri Furnitur dan Pengolahan Kayu

DOI:

https://doi.org/10.33884/jrsi.v10i1.9429

Keywords:

Verification, Quality Assurance, Detection

Abstract

Production process part body type car Rail Roof Side experience defect that is, there are variations in size specifications due to unstable processes. The cause of the unstable process is that the repair of the die tooling is not optimal and the machine parameters stamping not yet ideal for process operations. Verification quality assurace processes are needed to ensure QA is able to prevent, detect and control every production process activity. This research aims to design framework verification quality assurance by using detection capability variables and action conditions irregular. The process stability measurement variable using Cpk data is used as the main data. Design results framework process QA verification is a Cpk measurement >1.33 for a stable process standard, then a detection capability level during work operations of 0.8 for visual detection scores and tool detection capabilities, warnings, interlock system respectively 1.0/1.2/1.4. Meanwhile, the ability to detect post-work operations visually, tools, warnings, interlock system respectively 1.1/1.2/1.3/1.4. Meanwhile, the level of action ability irregular namely a score of 1 if the worker is able to take action according to the SOP and a score of 0 if the action does not comply with the SOP when there is an abnormal process. The final stage combines these 3 (three) variables to produce a rank value at each inspection point. Process quality assurance can be achieved if the rank value is 1.5–1.99 and the rank value is > 2.0. Process quality assurance is not achieved if the rank value is 0.0–1.19 and the rank value is 1.2–1.49. Process guarantees that are not achieved indicate that there are process variations or unstable processes. The verification process is considered complete when the results of the verification of process guarantees reach the target and improvements are made to quality guarantees that do not reach the target rank.

References

Abid, M. M. (2023). Analisis Kestabilan Proses Manufaktur Part Body Mobil. G-Tech: Jurnal Teknologi Terapan, 7(2), 464–473. https://doi.org/10.33379/gtech.v7i2.2034

Arham Pratikno, F., Anestesia Purba, A., Gesan Prabawa Anwar, P., Studi Teknik Logistik, P., Teknologi Industri dan Proses, J., Teknologi Kalimantan Jalan Soekarno Hatta, I. K., Joang, K., Timur, K., & Studi Teknik Industri, P. (2022). Pengembangan Metode Quality Assurance Matrix untuk Meningkatkan Sensitivitas Penilaian Defect pada Proses Manufaktur. 20(1), 388–392.

Chen, M. S., Wu, M. H., & Lin, C. M. (2014). Application of indices Cp and Cpk to improve quality control capability in clinical biochemistry laboratories. Chinese Journal of Physiology, 57(2), 63–68. https://doi.org/10.4077/CJP.2014.BAB170

Chesher, D., & Burnett, L. (1997). Equivalence of Critical Error Calculations and Process Capability Index Cpk. Clinical Chemistry, 43(6), 1100–1101. https://doi.org/10.1093/clinchem/43.6.1100

Fadhlullah, F., Noya, S., & Putrianto, N. K. (2024). Analysis of Pipe Water Inlet EW010 Quality Control Using Six Sigma and Failure Mode and Effect Analysis. Jurnal Sains Dan Aplikasi Keilmuan Teknik Industri (SAKTI), 4(1), 01–16. https://doi.org/10.33479/sakti.v4i1.87

Farioli, D., Kaya, E., Fumagalli, A., Cattaneo, P., & Strano, M. (2023). A Data-Based Tool Failure Prevention Approach in Progressive Die Stamping. Journal of Manufacturing and Materials Processing, 7(3). https://doi.org/10.3390/jmmp7030092

Galindo-Salcedo, M., Pertúz-Moreno, A., Guzmán-Castillo, S., Gómez-Charris, Y., & Romero-Conrado, A. R. (2022). Smart manufacturing applications for inspection and quality assurance processes. Procedia Computer Science, 198(2020), 536–541. https://doi.org/10.1016/j.procs.2021.12.282

Hailu, H., & Tabuchi, H. (2018). Minimization of Long Delivery Time of Shoe By Integration of 7 Qc Tools and Qc Story Formula: the Case of Sheba Leather Plc. http://www.journalcra.com

Hoffmann, R., & Reich, C. (2023). A Systematic Literature Review on Artificial Intelligence and Explainable Artificial Intelligence for Visual Quality Assurance in Manufacturing. Electronics (Switzerland), 12(22). https://doi.org/10.3390/electronics12224572

Ireson, W. G., & Juran, J. M. (1952). Quality-Control Handbook. In Journal of the American Statistical Association (Vol. 47, Issue 258). https://doi.org/10.2307/2280757

Levine, C. S., Al-Douri, A., Paglioni, V. P., Bensi, M., & Groth, K. M. (2024). Identifying human failure events for human reliability analysis: A review of gaps and research opportunities. Reliability Engineering and System Safety, 245(December 2023), 109967. https://doi.org/10.1016/j.ress.2024.109967

Luminiţa, Ş., Nadia, B., & Daniela, B. M. (2012). Quality Assurance Matrix in Automotive Industry. ANNALS OF THE ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering., XXI (XI),(2). https://doi.org/10.15660/auofmte.2012-2.2674

Panitsettakorn, W., Ongkunaruk, P., & Leingpibul, T. (2023). The present state of the cosmetics supply chain in Thailand and the prospective role of Independent Quality Assurance Verifiers (IQAVs) within the supply chain. Heliyon, 9(10). https://doi.org/10.1016/j.heliyon.2023.e20892

Rathnayake, C., Management, F. :, & Perera, H. M. (n.d.). Implementing Enterprise Systems in GMP Areas to Ensure Defect-Free Production and Quality Assurance.

Ratmananda, D., Wiranti, Y. T., & Fitratunnany Insanittaqwa, V. (2024). Perancangan Model Proses Bisnis dan Standar Operasional Prosedur Pada PT XYZ Bagian Operations Department. EQUIVA Journal of Mathematics & Information Technology, 2(1).

Sumarno, D. I., Zaid Sulaiman, & Maman Suryaman. (2023). Simulasi Perbaikan Desain Proses Pembentukan Tempa Dingin (Cold Forming) Mur M14. Jurnal Permadi : Perancangan, Manufaktur, Material Dan Energi, 5(2), 78–87. https://doi.org/10.52005/permadi.v5i2.122

Downloads

Published

2024-11-30