Analisis Diagnosis Tingkat Kesehatan Mental Dengan Teknik Klasifikasi Algoritma C4.5
DOI:
https://doi.org/10.33884/psnistek.v7i1.10726Keywords:
Kesehatan mental, data mining, DASS-21, Algoritma C4.5Abstract
Mental health has become an increasingly important issue amid the growing pressures of modern life, particularly in the workplace. Job demands, performance targets, and the dynamics of social relationships at work can trigger stress that negatively affects employee productivity and well-being. However, low awareness and social stigma surrounding mental health issues often result in stress going undetected at an early stage. This study aims to identify employee stress levels at a company in Batam City using a data mining approach. Data were collected through the distribution of questionnaires based on the DASS-21 (Depression Anxiety Stress Scales), which measures three main aspects: stress, anxiety, and depression. The data were analyzed using the Python programming language, with stages including preprocessing, transformation of scale values into numerical form, and the construction of a classification model using the C4.5 algorithm (Decision Tree Classifier). The results showed that the classification model was able to identify stress levels with an accuracy of 67%. The best performance was observed in the moderate stress class (class 1),
with a precision value of 0.71 and a recall of 0.79. In contrast, the classification performance for minority classes such as no stress (class 0) and severe stress (class 2) was relatively low. These findings suggest that the C4.5 algorithm is reasonably effective in recognizing dominant stress patterns but requires further data processing and class-balancing techniques to improve overall model performance. This study is expected to serve as a foundation for early detection and more accurate handling of workplace stress
References
Adriansa, M., Yulianti, L., & Elfianty, L. (2022). Analisis Kepuasan Pelanggan Menggunakan Algoritma C4.5. Jurnal Teknik Informatika UNIKA Santo Thomas, 07(21), 115–121. https://doi.org/10.54367/jtiust.v7i1.1983
Al-khateeb, M. O., & Science, C. (2021). Intelligent Data Analysis approaches for Knowledge Discovery: Survey and challenges. 20(5), 1782–1792. https://doi.org/10.17051/ilkonline.2021.05.196
Alfarizi, M. R. S., Al-farish, M. Z., Taufiqurrahman, M., Ardiansah, G., & Elgar, M. (2023). Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning Karya Ilmiah Mahasiswa Bertauhid (KARIMAH TAUHID), 2(1), 1–6.
Andarista, R. R., & Jananto, A. (2022). Penerapan Data Mining Algoritma C4.5 Untuk Klasifikasi Hasil Pengujian Kendaraan Bermotor. Jurnal Tekno Kompak, 16(2), 29. https://doi.org/10.33365/jtk.v16i2.1525
Atalya Angelus Leza, M., Widya Utami, N., & Anugrah Cahya Dewi, P. (2024). Prediksi Prestasi Siswa Smas Katolik Santo Yoseph Denpasar Berdasarkan Kedisiplinan Dan Tingkat Ekonomi Orang Tua Menggunakan Metode Knowledge Discovery in Database Dan Algoritma Regresi Linier Berganda. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 373379. https://doi.org/10.36040/jati.v8i1.8754
Brodley, C. E., Lane, T., & Stough, T. M. (2020). Knowledge discovery and data mining. American Scientist, 87(1), 54–61. https://doi.org/10.1511/1999.16.807
Febriani, S., & Sulistiani, H. (2021). Analisis Data Hasil Diagnosa Untuk Klasifikasi Gangguan Kepribadian Menggunakan Algoritma C4.5. 89Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(4), 89–95.
Furqan, M., Kurniawan, R., & HP, K. I. (2020). Evaluasi Performa Support Vector Machine Classifier Terhadap Penyakit Mental. Jurnal Sistem Informasi Bisnis, 10(2), 203–210. https://doi.org/10.21456/vol10iss2pp203-210
Gaol, N. Y. L. (2020). Prediksi Mahasiswa Berpotensi Non Aktif Menggunakan Data Mining dalam Decision Tree dan Algoritma C4.5. Jurnal Informasi & Teknologi, 2, 23–29. https://doi.org/10.37034/jidt.v2i1.22
Gunawan, I., & Yelmi, Y. (2021). Rancang Bangun Robot Pengawas Dokumen Berbasis Raspberry Pi2 dengan Pemrograman Python. Jurnal Ilmu Komputer Dan Bisnis, 12(1), 144–149. https://doi.org/10.47927/jikb.v12i1.99
Hendra, H., Muhaemin, M., & Santosa, S. (2023). Klasifikasi Pasien Gangguan Jiwa Menggunakan Algoritma C4. 5 Sebagai Dasar Pengambilan Keputusan Kesehatan Jiwa. Prosiding Seminar Nasional
Hikmatulloh, H., Rahmawati, A., Wintana, D., & Ambarsari, D. A. (2019). Penerapan Algoritma Iterative Dichotomiser Three (Id3) Dalam Mendiagnosa Kesehatan Kehamilan. Klik - Kumpulan Jurnal Ilmu Komputer, 6(2), 116. https://doi.org/10.20527/klik.v6i2.189
Kukuh Wahyudi, A., Azizah, N., & Saputro, H. (2022). Data Mining Klasifikasi Kepribadian Siswa Smp Negeri 5 Jepara Menggunakan Metode Decision Tree Algoritma C4.5. Journal of Information System and Computer, 2(2), 8–13. https://doi.org/10.34001/jister.v2i2.392
Manullang, N., Sembiring, R. W., Gunawan, I., Parlina, I., & Irawan, I. (2021). Implementasi Teknik Data Mining untuk Prediksi Peminatan Jurusan Siswa Menggunakan Algoritma C4.5. Jurnal Ilmu Komputer Dan Teknologi, 2(2), 1–5. https://doi.org/10.35960/ikomti.v2i2.700
Marlina, D., & Bakri, M. (2021). Penerapan Data Mining Untuk Memprediksi Transaksi Nasabah Dengan Algoritma C4.5. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(1), 23–28
Nanda, Y. A. I., & Sari, B. W. (2020). Naive Bayes Algorithm Implementation To Detect Human Personality Disorders. Jurnal Techno Nusa Mandiri, 17(1), 9–16. https://doi.org/10.33480/techno.v17i1.1239
Nisa, K., Informatika, P. S., & Bangsa, U. H. (2024). Klasifikasi Penyakit Gangguan Mental dengan Algoritma LightGBM. 9,1086–1094.
Novika, T., Poningsih, P., Okprana, H., Windarto, A. P., & Siahaan, H. (2021). Penerapan Data Mining Klasifikasi Tingkat Pemahaman Siswa Pada Pelajaran Matematika. Jurnal Media Informatika Budidarma, 5(1), 9.
Nugraha, F. F., Sunandar, I., & Julian, C. (2022). Penerapan Data Mining Dengan Metode Kalsifikasi Menggunakan Algoritma C4.5. Teknologi, 7(March), 10–20.
Nurjayadi, R., & Kristiana, T. (2019). Penerapan Association Rule Menggunakan Algoritma Apriori Untuk Analisa Penjualan Aufa Baby Shop. Indonesia Journal on Computer and Information Technology (IJCIT), 4(September), 205–214.
Onie, S., Usman, Y., Widyastuti, R., Lusiana, M., Angkasawati, T. J., Musadad, D. A., Nilam, J., Vina, A., Kamsurya, R., Batterham, P., Arya, V., Pirkis, J., & Larsen, M. (2024). Indonesia’s first suicide statistics profile: an analysis of suicide and attempt rates, underreporting, geographic distribution, gender, method, and rurality. The Lancet Regional Health -Southeast Asia, 22, 100368. https://doi.org/10.1016/j.lansea.2024.100368
Prihatmono, M. W., & Watratan, A. F. (2019). Implementasi Algoritma C4.5 Menggunakan Python Untuk Klasifikasi Kepuasan Konsumen. Progres, 49-55.
Putri, N. B., & Wijayanto, A. W. (2022). AnalisisKomparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing. Komputika : Jurnal Sistem Komputer, 11(1), 59–66. https://doi.org/10.34010/komputika.v11i1.4350
Ridlo, I. A. (2020). Pandemi COVID-19 dan Tantangan Kebijakan Kesehatan Mental di Indonesia. INSAN Jurnal Psikologi Dan Kesehatan Mental, 5(2), 162. https://doi.org/10.20473/jpkm.v5i22020.162-171
Sagala, N., & Tampubolon, H. (2018). Komparasi Kinerja Algoritma Data Mining pada Dataset Konsumsi Alkohol Siswa. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 4(2) 98–103. https://doi.org/10.23917/khif.v4i2.7061
Sepharni, A., Hendrawan, I. E., & Rozikin, C. (2022). Klasifikasi Penyakit Jantung dengan Menggunakan Algoritma C4.5. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 7(2), 117. https://doi.org/10.30998/string.v7i2.12012
Setyaningrum, W., & Yanuarita, H. A. (2020). Pengaruh Covid-19 Terhadap Kesehatan Mental Masyarakat Di Kota Malang. JISIP (Jurnal Ilmu Sosial Dan Pendidikan), 4(4). https://doi.org/10.58258/jisip.v4i4.1580
Suci, E. P. M. E., & Milkhatun. (2020). Analisis Rekam Medis Pasien Risiko Perilaku Kekerasan dengan Menggunakan Algoritma C4.5 di Rumah Sakit Jiwa Atma Husada Mahakam Samarinda. Borneo Student Research, 2(1), 16–24
Supini, P., Gandakusumah, A. R. P., Asyifa, N., Auliya, Z. N., & Ismail, D. R. (2024). Faktor-Faktor yang Mempengaruhi Kesehatan Mental pada Remaja. JERUMI: Journal of Education Religion Humanities and Multidiciplinary, 2(1), 166–172. https://doi.org/10.57235/jerumi.v2i1.1760
Treise, C., Brown, R. J., & Perez, J. (2019). Towards a Multi-Level Phenomenology of Delusional Disorder: The Dissociative Thought-Script. Psychopathology, 52(1), 50–58. https://doi.org/10.1159/000499596
Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. Jurnal Media Informatika Budidarma, 4(2), 437. https://doi.org/10.30865/mib.v4i2.2080.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Prosiding Seminar Nasional Ilmu Sosial dan Teknologi (SNISTEK)

This work is licensed under a Creative Commons Attribution 4.0 International License.