Deteksi Dini Autisme Anak Menggunakan Fuzzy Analytical Hierarchy Process (FAHP)
DOI:
https://doi.org/10.33884/psnistek.v7i1.10740Keywords:
Logika Fuzzy, FAHP, Deteksi dini, AutismeAbstract
Children with Autism Spectrum Disorder (ASD) often face significant challenges in conventional educational settings. This is exacerbated by the lack of accurate early detection and often leads to delayed diagnosis. This results in academic difficulties for children with autism spectrum disorder. The research team proposed a Fuzzy Logic-based conceptual model, specifically applying the Fuzzy Analytical Hierarchy Process (FAHP), as a tool for early detection of autism potential in children.
The FAHP approach was chosen due to its ability to handle uncertainty and ambiguity that are closely related to the assessment of child characteristics, thus enabling more objective identification. The data used in this research is sourced from the Kaggle dataset which consists of 6075 records, 14 attributes, and 1 label. The dataset obtained is cleaned and then processed using FAHP. The results of this study are FAHP scores and autism risk levels. The findings indicate that a fuzzy logic-based approach can be used for early detection of autism, although wider empirical validation is needed from experts such as psychologists.
References
Bertelli, M., Bianco, A., Boniotti, V. dan Chaplin, E. 2025. Definition, Diagnosis, and Prevalence of Autism Spectrum Disorder. doi:10.1007/978-3- 031-40858-8_229-1.
Engelbrecht, N. 2020. Autism Spectrum Quotient. URL:https://embrace-autism.com/autism-spectrum-quotient/. Diakses tanggal 12 Mei 2025.
KPAI (Komisi Perlindungan Anak Indonesia). 2025. Penyandang disabilitas, termasuk anak dengan disabilitas dan berkebutuhan khusus, membutuhkan layanan dan biaya kesehatan yang lebih besar.
Lee, C.M., Altschuler, M.R., Esler, A.N., Burrows, C.A. dan Hudock, R.L. 2023. Why are only some children with autism spectrum disorder misclassified by the social communication questionnaire? An empirical investigation of individual differences in sensitivity and specificity in a clinic-referred sample. Journal of Neurodevelopmental Disorders, 15(1), hlm. 28. doi:10.1186/s11689-023-09497-7
Liu, Y., Eckert, C.M. dan Earl, C. 2020. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 161, 113738. doi:10.1016/j.eswa.2020.113738.
Perdana Wanti, L. & Puspitasari, L. (2022) Optimization of the Fuzzy Logic Method for Autism Spectrum Disorder Diagnosis. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6, pp. 16–24. doi: 10.29207/resti.v6i1.3599.
Stefanni, D.M. 2024. Wamenkes Ungkap 2,4 Juta Anak di Indonesia Idap Autisme. URL: https://health.detik.com/berita-detikhealth/d-7336606/wamenkes-ungkap-2-4-juta-anak-di-indonesia-idap-autisme. Diakses tanggal 10 Mei 2025.
Sutadi, R., Muti'ah, R., Adetya, S., Yunanto, K.T. dan Arneliza, A. 2024. Deteksi Dini Autisme: Pembekalan untuk Guru di Kota Depok. Jurnal Abdi Masyarakat Indonesia, 4, hlm. 1723–1732. doi:10.54082/jamsi.1419.
Suripto, R.N.R. dan Kirana, A.S. 2022. Teknik pre processing dan classification dalam data science.
Tiblola, L.I., Aminullah, A. & Nugroho, A.S.B. (2024) Analysis of supplier selection criteria using fuzzy analytical hierarchy process by contractors in Yogyakarta. Jurnal Pendidikan Teknologi dan Kejuruan, 30, p. 112. doi: 10.21831/jptk.v30i1.68323.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Prosiding Seminar Nasional Ilmu Sosial dan Teknologi (SNISTEK)

This work is licensed under a Creative Commons Attribution 4.0 International License.