PREDIKSI PRODUKSI SUSU SEGAR DI INDONESIA MENGGUNAKAN ALGORITMA BACKPROPAGATION

  • Jonas Rayandi Saragih Stikom Tunas Bangsa
  • Dedy Hartama
  • Anjar Wanto

Abstract

Milk is a white liquid produced from female mammals that contain carbohydrates that are useful for humans. Based on data from the Indonesian Statistics Agency, milk productivity in Indonesia from 2012 to 2018 experienced an unstable curve. Therefore this research was conducted to predict and find out the level of development of milk productivity in Indonesia for the following years, so that companies that use milk have a reference to continue to strive to increase milk productivity in Indonesia to remain stable in order to meet the needs of the community and  minimize milk imports. This algorithm used is backpropagation neural network. This algorithm is able to predict good data especially data that is sustainable in a certain period of time. to simplify this research the author uses the Matlab 2011 application. To facilitate writers, authors use 5 architectural model, namely 5-9-1 = 94%, 5-12-1 = 88%, 5-14-1 = 88%, 5-15-1 = 94%, 5-17-1 = 94 %. So we get the best architectural model using the architectural mode 5-15-1 with an accuracy rate of 94% with MSE = 0,000999842.  Finally, this model is good enough to predict fresh milk production by province in Indonesia

References

[1] E. Hartato, D. Sitorus, and A. Wanto, “Analisis jaringan saraf tiruan untuk prediksi luas panen biofarmaka di indonesia,” semanTIK, vol. 4, no. 1, pp. 49–56, 2018.
[2] R. R. M. Salim and A. S. Jauhari, “Perancangan Pengenalan Karakter Alfabet menggunakan Metode Hybrid Jaringan Syaraf Tiruan,” J. SIFO Mikroskil, vol. 17, no. 01, pp. 109–118, 2016.
[3] Julpan, E. B. Nababan, and M. Zarlis, “Analisis Fungsi Aktivasi Sigmoid Biner Dan SIgmoid Bipolar Dalam Algoritma Backpropagation Pada Prediksi Kemampuan Siswa,” J. Teknovasi, vol. 02, no. 1, pp. 103–116, 2015.
[4] A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform., vol. 2, no. 2, pp. 37–44, 2017.
[5] J. R. Saragih, M. B. S. Saragih, and A. Wanto, “Analisis Algoritma Backpropagation Dalam Prediksi Nilai Ekspor (Juta Usd),” J. Pendidik. Teknol. dan Kejuru., vol. 15, no. 2, pp. 254–264, 2018, doi: 10.23887/jptk-undiksha.v15i2.14362.
Published
2020-03-18
How to Cite
SARAGIH, Jonas Rayandi; HARTAMA, Dedy; WANTO, Anjar. PREDIKSI PRODUKSI SUSU SEGAR DI INDONESIA MENGGUNAKAN ALGORITMA BACKPROPAGATION. JURNAL ILMIAH INFORMATIKA, [S.l.], v. 8, n. 01, p. 59-65, mar. 2020. ISSN 2615-1049. Available at: <http://ejournal.upbatam.ac.id/index.php/jif/article/view/1847>. Date accessed: 29 mar. 2020. doi: https://doi.org/10.33884/jif.v8i1.1847.