SISTEM APLIKASI DATA PEGAWAI PENSIUN MENGGUNAKAN METODE K-MEANS

  • Seta Permana Politeknik Pos Indonesia
  • Woro Isti Rahayu

Abstract

Division or work unit of Human Resources (HR) in PT. Kawasan Berikat Nusantara (PT. KBN) (Persero) has job desks including finding and accepting new employees at PT. KBN, handles the process of receiving employee salaries, handles employee data management including employee retirement data. The problem with managing employee pension data is that there is no system that can handle this. So this research aims to be able to help in making a system that fits the needs for managing retirement employee data. By determining the pension application for employees at the age of 51-53 years with an existing position at PT. KBN, namely, head of division, section head, section head, and executive. In determining this, the Clustering method will be used, namely K-means. This method is considered appropriate because it can group data based on the Cluster 's closest center point with the data. Classification of employees based on age and position into 2 groups, namely the submission of pensions at the age of 51 years filing a pension submission of retirement at the age of 53. From the results that have been calculated from 56 data of employees aged 51-53 years resulted in 21 employees being submitted in retirement age 51 years, 35 employees in filing retirement 53 years.


 

References

[1] H. S, S. A and S. E, "Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu)," Jurnal Media Infotama, vol. 11, pp. 130-138, 2015.
[2] M. M. I, "K-means Clustering," Medium, 21 Juni 2019. [Online]. Available: https://medium.com/@16611053/k-means-clustering-c5ab3351184b. [Accessed 08 Januari 2020].
[3] S. S, "An Introduction To Clustering," Medium, 06 Juni 2018. [Online]. Available: https://medium.com/datadriveninvestor/an-introduction-to-clustering-61f6930e3e0b. [Accessed 08 Januari 2020].
[4] K. R, "K-means Clustering," Medium, 30 September 2018. [Online]. Available: https://medium.com/datadriveninvestor/k-means-clustering-6f2dc458cce8. [Accessed 08 Januari 2020].
[5] P. C and H. N, "The Data Mining Analysis To Determine The Priorities Of Families Who Receiving Assistance," Jurnal Of Physic Conferences Series, vol. 1280, no. 2, pp. 1-8, 2019.
[6] R. D. Ramadhani, "Memahami K-Mean Clustering Dengan R," Medium, [Online]. Available: https://medium.com/@16611129/belajarbersama-kides-episode-2-cd51d0bfd121. [Accessed 08 Januari 2020].
[7] A. Nurzahputra, M. A. Muslim and M. Khusniati, "Penerapan Algoritma K-means Untuk Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa," Techno.COM, vol. 16, no. 1, pp. 17-24, 2017.
[8] T. N. Hermawan, M. Ugiarto and N. Puspitasari, "Sistem Evaluasi Kinerja Asisten Laboratorium Menggunakan Metode K-means," Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, vol. 3, no. 2, pp. 100-103, 2017.
[9] T. K, T. B and T. I, "Penilaian Kinerja,Reward, Dan Punishment Terhadap Kinerja Karyawan Pada PT Pertamina (Persero) Cabang Pemasaran Sulutenggo," Jurnal EMBA, vol. 3, no. 2, pp. 884-895, 2015.
[10] A. F. Raju, "Tinjauan Sistem Pembayaran Klaim Biaya Pengobatan Karyawan PT Antam, Tbk Makassar," [Online]. Available: http://eprints.unm.ac.id/14649/1/JURNAL%201592132032%20AMALIAH%20FAHRANI%20RAJU.pdf. [Accessed 08 Januari 2020].
[11] I. R, "Tagihan," in Akuntansi Dasar Jilid II : Edisi Revisi, Sidoarjo, Uwais Inspirasi Indonesia, 2017.
[12] I. Parlina, A. P. Windarto, A. Wanto and M. Lubis, "Memanfaatkan Algoritma K-means Dalam Menentukan Pegawai Yang Layak Mengikuti Assesment Center," CESS (Journal of Computer Engineering System and Science) p, vol. 3, no. 1, pp. 87-93, 2018.
[13] B. Agiato, M. Somantri and E. W. Sinuraya, "Perancangan Aplikasi Informasi Tagihan Listrik, PDAM, Dan Telepon Berbasis Android Pada Wisma Parikesit Tegalrejo Kota Salatiga," TRANSIENT, vol. 7, no. 2, 2018.
[14] H. Febriawati, W. Angraini, S. Ekowati and D. Astuti, "Analisis Manajemen Bencana Gempa Di Rumah Sakit Umum Daerah DR. M. Yunus Kota Bengkulu," Jurnal Ilmu Kesehatan Masyarakat, vol. 8, no. 1, pp. 28-33, 2017.
Published
2020-09-26
How to Cite
PERMANA, Seta; RAHAYU, Woro Isti. SISTEM APLIKASI DATA PEGAWAI PENSIUN MENGGUNAKAN METODE K-MEANS. JURNAL ILMIAH INFORMATIKA, [S.l.], v. 8, n. 02, p. 99-106, sep. 2020. ISSN 2615-1049. Available at: <http://ejournal.upbatam.ac.id/index.php/jif/article/view/1883>. Date accessed: 26 feb. 2021. doi: https://doi.org/10.33884/jif.v8i02.1883.