PREDIKSI MAHASISWA INSTITUT SOSIAL DAN TEKNOLOGI WIDURI JAKARTA BERPOTENSI DROP OUT MENGGUNAKAN ALGORITMA NAÏVE BAYES
DOI:
https://doi.org/10.33884/jif.v13i02.10310Keywords:
Prediksi, Data Mining, Drop out, Naïve BayesAbstract
Universities are responsible for producing quality graduates and reducing dropout rates (DO), a serious challenge for the Widuri Institute of Social and Technology (ISTEK). This phenomenon has a negative impact on the quality of education and accreditation, making early identification of students who have the potential to drop out (DO) very crucial. This study aims to apply the Naïve Bayes algorithm to predict the potential for dropout (DO) of ISTEK Widuri students based on data on the activities of the 2021, 2022, and 2023 intakes. Naïve Bayes has proven effective in classifying students at risk of dropping out (DO). The Semester Credit Unit (SKS) attribute is the most dominant indicator, students with low SKS have a high potential for dropping out (DO). Model performance varies for each batch, in the 2021 batch it reached 90% accuracy (100% DO precision, 40% recall), the 2022 batch showed 93.75% accuracy (100% DO precision, 60% DO recall), and the 2023 batch had 86.67% accuracy (100% DO precision, 33.33% DO recall). This model is very good at validating students who are safe from DO (100% recall of Not DO in all batches). Even so, the model still needs to be improved so that it can find all students who are at risk of dropping out (DO) as a whole. The prediction results for students with the potential for DO at ISTEK Widuri Jakarta are expected to support more optimal prevention efforts and contribute to improving the quality of education.
References
Ummiy Fauziyah Laili, Choiru Umatin, and M Ubaidillah Ridwanulloh, “Analisis Potensial Drop Out Mahasiswa Dengan K-Means++ Clustering Dalam Upaya Peningkatan Kualitas IAIN Kediri,” Jurnal Kajian, Peelitian Dan Pengembangan Kependidikan, vol. 14, no. 2, pp. 145–153, Apr. 2023, doi: https://doi.org/10.31764/paedagoria.v14i2.14077.
Raka Putra Nugraha, Gibtha Fitri Laxmi, and Freza Riana, “Penerapan K-Means++ Untuk Pengelompokan Mahasiswa Berpotensi Drop Out (Studi Kasus: Universitas IBN Khaldun Bogor),” vol. 8, no. 3, Jun. 2024, doi: https://doi.org/10.36040/jati.v8i3.9738.
Nariza Wanti Wulan Sari, Dedy Mirwansyah, Fahrullah, Ivan Leonard Tandi, and Ali Hakim Hadi Sopyan, “Prediction Of Students Drop Out With Naive Bayes,” Jurnal Mantik, vol. 6, Nov. 2022, doi: https://doi.org/10.35335/mantik.v6i3.3046.
Salmawati, Yuyun, and Hazriani, “Klasifikasi Mahasiswa Berpotensi Drop Out Menggunakan Algoritma Naive Bayes Dan Decision Tree,” Jurnal Imiah Ilmu Komputer, vol. 8, no. 2, Sep. 2022.
N. M. Aji, V. Atina, and N. A. Sudibyo, “PEMODELAN PREDIKSI KELULUSAN MAHASISWA DENGAN METODE NAÏVE BAYES DI UNIBA,” Jurnal Manajemen Informatika & Sistem Informasi (MISI), vol. 6, no. 2, 2023, doi: 10.36595/misi.v5i2.
Windi Irmayani, “Visualisasi Data Pada Data MiningMenggunakan Metode Klasifikasi Naive Bayes,” Jurnak Khatulistiwa Informatika, vol. 9, no. 1, p. 68, 2021, doi: https://doi.org/10.31294/jki.v9i1.9593.
Muchamad Taufik Anwar, Lucky Heriyanto, and Fadhla Fanini, “Model Prediksi Dropout Mahasiswa Menggunakan Teknik Data Mining,” Jurnal Informatika UPGRIS, vol. 7, no. 1, Jun. 2021.
Sidik Rahmatullah, Ngajiyanto, Pakarti Riswanto, and Arief Hendriawan, “Algoritma Naive Bayes Untuk Memprediksi Jumlah Siswa Berpotensi Drop Outs,” Jurnal Informasi dan Komputer, vol. 10, no. 1, Apr. 2022, doi: https://doi.org/10.35959/jik.v10i1.308.
Muchamad Taufiq Anwar and Denny Rianditha Arief Permana, “Perbandingan Performa Model Data Mining Untuk Prediksi Dropout Mahasiswa,” Jurnal Teknologi dan Manajemen, vol. 19, no. 2, Aug. 2021, doi: https://doi.org/10.52330/jtm.v19i2.34.
David Ramdan, Feby Valentino, Nur Ikhsan, and Asrul Sani, “Penerapan Data Mining Terhadap Prediksi Mahasiswa Drop Out Pada Kampus STMIK Widuri Jakarta Dengan Metode Decision Tree C.45,” Jurnal Bidang, vol. 1, no. 2, pp. 95–104, Jun. 2023, Accessed: Feb. 19, 2025. [Online]. Available: https://ejournal.kreatifcemerlang.id/index.php/jbpi/article/view/113
Amelia Ramadhani, Reza Fazarany Noor, Dwi Vernanda, and Tri Herdiawan, “Klasifikasi mahasiswa Berpotensi Drop Out Menggunakan Algoritma C4.5 Di Politeknik Negeri Subang,” Jurnal Teknokompak, vol. 18, no. 1, pp. 101–112, 2024, doi: https://doi.org/10.33365/jtk.v18i1.3439.
Heliyanti Susana, Nana Suarna, Fathurrohan, and Kaslani, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” Jurnal Sistem Informasi dan Teknologi Informasi), vol. 4, no. 1, pp. 1–8, Jan. 2022, doi: https://doi.org/10.52005/jursistekni.v4i1.96.
Guntur Firmansyah and Arief Hermawan, “Implementasi Algortima Naive Bayes Untuk Klasifikasi Kesegaran Buah Jeruk,” Jurnal Informatika, vol. 10, no. 2, pp. 180–184, Oct. 2023, doi: 10.31294/inf.v10i2.16115.
Muhyddin A.M Hayat and Rizki Yusliana Bakti, “Klasifikasi Mahasiswa Berpotensi Putus Studi Menggunakan Algoritma Naive Bayes Pada Fakultas Teknik Unismuh Makassar,” Arus Jurnal Sains Dan Tektologi, vol. 2, no. 2, Oct. 2024, Accessed: Feb. 19, 2025. [Online]. Available: https://jurnal.ardenjaya.com/index.php/ajst/article/view/673
Alvian David Imanuel, Nur Nawaningtyas Pusparini, and Asrul Sani, “Klasifikasi untuk memprediksi tingkat kelulusan mahasiswa STMIK Widuri menggunakan algoritma naive bayes,” Jurnal Ilmiah Informatika (JIF), vol. 12, no. 1, pp. 1–7, Mar. 2024, doi: https://doi.org/10.33884/jif.v12i01.8201.
Asrul Sani, “Analisa penjualan retail dengan metode association rule untuk pengambilan keputusan strategis perusahaan: studi kasus PT. XYZ”.
Maria Leonila Yawa Yoridi and Magdalena A. Ineke Pakereng, “Klasifikasi Anak Berpotensi Putus Sekolah dengan Metode Naïve Bayes Di Kabupaten Manokwari,” Sep. 2023. doi: https://doi.org/10.47134/pjise.v1i2.2327.
Muhammad Nasir and Verawaty, “Penerapan Algoritma Naive Bayes Classifier Untuk Evaluasi Kinerja Akademik Mahasiswa Universitas Bina Darma,” Mar. 2021. doi: http://dx.doi.org/10.26798/jiko.v5i2.227.
Nanda Kharisma and Nur Nawaningtyas Pusparini, “Analisa kepuasan layanan biro administrasi akademik kemahasiswaan STMIK Widuri menggunakan algoritma naive bayes classifier,” Mar. 2025. doi: https://doi.org/10.33884/jif.v13i01.9427.
Tuti Hartati, Rachmat Trikar Sohadi, Edi Tohidi, and Edi Wahyudin, “Penerapan Algoritma Naive Bayes pada Analisis Sentimen Ulasan Aplikasi Whoosh-Kereta Cepat Di Google Play Store,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 244–249, Mar. 2024, doi: http://dx.doi.org/10.36499/jinrpl.v6i1.10307.
Saveria Marbun, Nurcahyo Budi Nugroho, and Rico Imanta Ginting, “Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Dalam Memprediksi Angka Kelahiran,” Jurnal Sistem Informasi TGD, vol. 1, no. 6, Nov. 2022, doi: https://doi.org/10.53513/jursi.v1i6.7298.
Nurul Khasanah, Agus Salim, Nurul Afni, Rachman Komarudin, and Yana Iqbal Maulana, “Prediksi Kelulusan Mahasiswa Dengan MetodeNaive Bayes,” Jul. 2022. doi: http://dx.doi.org/10.31602/tji.v13i3.7312.
Edi Sutoyo and Ahmad Almaarif, “Terakreditasi SINTA Peringkat 2 Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier,” masa berlaku mulai, vol. 1, no. 3, pp. 95–101, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH INFORMATIKA

This work is licensed under a Creative Commons Attribution 4.0 International License.