PREDIKSI PENERIMAAN MAHASISWA BARU UNIVERSITAS SINGAPERBANGSA KARAWANG DENGAN RANDOM FOREST

Authors

  • Mochammad Fitra Pamungkas Universitas Singaperbangsa Karawang
  • Betha Nurina Sari Universitas Singaperbangsa Karawang
  • Iqbal Maulana Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.33884/jif.v13i02.10662

Keywords:

New student admission, Prediction, Random Forest, SNBT

Abstract

The selection of study programs and the selection process for new student admissions are crucial stages that have an impact on the smooth running of studies and students' future careers. However, this process is often still done subjectively, thus potentially causing a mismatch between interests, abilities, and the chosen study program. This research aims to implement the Random Forest algorithm, analyze the factors that influence acceptance, and determine the performance of the prediction model generated by the Random Forest algorithm in assisting new student admissions for the National Selection Based on Test (SNBT) pathway at Universitas Singaperbangsa Karawang. This research uses the Knowledge Discovery in Database (KDD) method which consists of 5 stages, namely Data Selection, Preprocessing, Transformation, Data Mining, and Evaluation. The data used was 815 new student data of Universitas Singaperbangsa Karawang, which included UTBK scores, school background, and choice of prospective student study programs. In the Transformation and Data Mining stages, 4 data splitting scenarios were carried out, namely 90:10, 80:20, 70:30, and 60:40. The best performance with the Random Forest model is generated by the 80:20 data splitting scenario with an accuracy value of 0.945, precision of 0.937, recall of 0.943, f1-score of 0.940 and AUC value of 0.983.

References

Badan Pusat Statistik Provinsi Jawa Barat, “Angka Partisipasi Kasar (APK) Provinsi Jawa Barat menurut Jenjang Pendidikan,” Badan Pusat Statistik. Accessed: Jun. 30, 2025. [Online]. Available: https://jabar.bps.go.id/id/statistics-table/2/OTI2IzI=/angka-partisipasi-kasar-apk-provinsi-jawa-barat-menurut-jenjang-pendidikan.html

I. Nawangsih, I. Melani, S. Fauziah, and A. I. Artikel, “PELITA TEKNOLOGI PREDIKSI PENGANGKATAN KARYAWAN DENGAN METODE ALGORITMA C5.0 (STUDI KASUS PT. MATARAM CAKRA BUANA AGUNG,” Jurnal Pelita Teknologi, vol. 16, no. 2, pp. 24–33, 2021.

Republik Indonesia, Undang-Undang Republik Indonesia Nomor 12 Tahun 2012 tentang Pendidikan Tinggi. Indonesia, 2012.

Direktorat Jenderal Pendidikan Tinggi, “Kerangka Kualifikasi Nasional Indonesia dan Pendidikan Tinggi,” Jakarta, 2020.

Kementerian Pendidikan dan Kebudayaan Republik Indonesia, Peraturan Mendikbud No. 6 Tahun 2020 tentang Penerimaan Mahasiswa Baru Program Sarjana pada Perguruan Tinggi Negeri. 2020.

Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.), 2nd Edition. O’Reilly Media, 2019.

J. Demšar et al., “Orange: Data Mining Toolbox in Python Tomaž Curk Matija Polajnar Laň Zagar,” 2013.

S. Devella, Y. Yohannes, and F. N. Rahmawati, “Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 2, pp. 310–320, Aug. 2020, doi: 10.35957/jatisi.v7i2.289.

S. A. Putri, N. Selayanti, M. Kristanaya, M. P. Azzahra, M. G. Navsih, and K. M. Hindrayani, “Penerapan Machine Learning Algoritma Random Forest Untuk Prediksi Penyakit Jantung,” Seminar Nasional Sains Data, vol. 2024, [Online]. Available: https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction.

F. Gorunescu, Data Mining, vol. 12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-19721-5.

Y. Handayani, T. Hidayat, D. Novitaningrum, A. Rahman Ismail, U. Selamat, and J. Tengah, “PERBANDINGAN ALGORITMA LOGISTIC REGRESSION DAN NAÏVE BAYES CLASSIFIER DALAM IDENTIFIKASI PENYAKIT LIVER,” 2025. [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR

V. Karina, “APPLICATION OF RANDOM FOREST METHOD TO PREDICTION OF STUDENT CANDIDATES ACCEPTED IN THE SNMPTN PATHWAY (CASE STUDY AT UNIVERSITAS LAMBUNG MANGKURAT),” 2024.

L. Hidayah and M. I. Rosadi, “PENERAPAN ALGORITMA RANDOM FOREST UNTUK MEMPREDIKSI JUMLAH SANTRI BARU,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3S1, Oct. 2024, doi: 10.23960/jitet.v12i3S1.5237.

M. Rianto and R. Yunis, “Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest,” Paradigma - Jurnal Komputer dan Informatika, vol. 23, no. 1, Mar. 2021, doi: 10.31294/p.v23i1.9781.

Published

2025-09-10

How to Cite

Pamungkas, M. F., Sari, B. N., & Maulana, I. (2025). PREDIKSI PENERIMAAN MAHASISWA BARU UNIVERSITAS SINGAPERBANGSA KARAWANG DENGAN RANDOM FOREST. JURNAL ILMIAH INFORMATIKA, 13(02), 190–196. https://doi.org/10.33884/jif.v13i02.10662