PENERAPAN ALGORITMA REGRESI LINIER BERGANDA UNTUK PREDIKSI STOK BARANG DI LABORATORIUM KLINIK PROLAB MEDIKA

Authors

  • Lilis Komariah Universitas Faletehan
  • Dede Brahma Arianto Universitas Faletehan

DOI:

https://doi.org/10.33884/jif.v13i02.10666

Keywords:

machine learning, stock prediction, Multiple Linear Regresi, Multiple Linear Regression, inventory management

Abstract

Manual stock management at Prolab Medika Clinical Laboratory often causes delays in reporting and potential errors in data recording. Accurate stock prediction is key to avoiding shortages or excess inventory that can disrupt laboratory operations. This research aims to develop a web-based stock prediction system using machine learning to improve inventory management efficiency. The machine learning method applied is Multiple Linear Regression with variables of incoming stock, remaining stock, and outgoing stock obtained from laboratory historical data. The research results show that the system is able to predict stock requirements with a good level of accuracy based on evaluation using Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and R² Score, and provides real-time reports that facilitate the head of logistics in decision making.

References

D. Supriyadi, R. Nuzulah, and M. Hermawati, “Aplikasi Inventori Stok Opname Barang Di Pt. Indomarco Prismatama Cabang Bogor,” in Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi), 2021, pp. 121–125.

K. B. Praveen, P. Kumar, J. Prateek, G. Pragathi, and J. Madhuri, “Inventory management using machine learning,” International Journal of Engineering Research & Technology (IJERT), vol. 9, no. 06, pp. 866–869, 2020.

A. Mahdy, W. Zakaria, A. Helmi, A. S. Helaly, and A. M. E. Mahmoud, “Machine learning approach for core permeability prediction from well logs in Sandstone Reservoir, Mediterranean Sea, Egypt,” J Appl Geophy, vol. 220, p. 105249, 2024.

W. T. Bhirawa, “Proses pengolahan data dari model persamaan regresi dengan menggunakan statistical product and service solution (SPSS),” Jurnal Mitra Manajemen, vol. 7, no. 1, 2015.

I. D. Id, Machine Learning: Teori, Studi Kasus dan Implementasi Menggunakan Python, vol. 1. Unri Press, 2021.

N. N. Sari, T. T. Anisah, and R. Fitriani, “Implementasi Machine Learning Untuk Prediksi Harga Laptop Menggunakan Algoritma Regresi Linear Berganda,” Jurnal Manajemen Informatika (JAMIKA), vol. 14, no. 2, pp. 162–177, 2024.

R. Daeli, E. Rahayu, and E. Hadinata, “Analisis Prediksi Persediaan Stok Barang Pada Toko Santi Fotokopi Menggunakan Algoritma Apriori Berbasis Website,” Indonesian Journal Computer Science, vol. 2, no. 2, pp. 111–119, 2023.

A. N. S. Pratama and N. Ratama, “Penerapan Metode Data Mining Untuk Memprediksi Kelulusan Mahasiswa Agar Tepat Waktu Menggunakan Algoritma C4. 5 (Studi Kasus: Universitas Pamulang),” Journal of Research and Publication Innovation, vol. 2, no. 1, pp. 1324–1329, 2024.

D. M. Huda, G. Dwilestari, A. R. Rinaldi, and I. Solihin, “Prediksi Harga Mobil Bekas Menggunakan Algoritma Regresi Linear Berganda,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 150–157, 2024.

Z. N. Dianto and E. Widati, “Analisis management inventory untuk menghindari death stock product di TB. Sinar Baru,” VALUE, vol. 4, no. 1, pp. 50–72, 2023.

S. Pandiangan, Operasional Manajemen Pergudangan. Jakarta: Penerbit Mitra Wacana Media, 2018.

R. R. Prasena and H. Sama, “Implementasi Aplikasi Stock Opname Berbasis Website App Pada Perubahan Proses Bisnis Di Pt Well Chois Apparel,” in Conference on Business, Social Sciences and Innovation Technology, 2020, pp. 391–400.

A. Singh, “Evolution of Computer Science: A Historical and Technological Overview,” American Journal of Artificial Intelligence and Computing, vol. 1, no. 2, pp. 62–86, 2025.

Z. A. Fikriya, M. I. Irawan, and S. Soetrisno, “Implementasi extreme learning machine untuk pengenalan objek citra digital,” Jurnal Sains dan Seni ITS, vol. 6, no. 1, pp. A1–A6, 2017.

A. Ahmad, “Mengenal artificial intelligence, machine learning, neural network, dan deep learning,” J. Teknol. Indones., no. October, vol. 3, 2017.

E. Triyanto, H. Sismoro, and A. D. Laksito, “Implementasi Algoritma Regresi Linear Berganda Untuk Memprediksi Produksi Padi Di Kabupaten Bantul,” Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 4, no. 2, pp. 73–86, 2019.

A. N. Maharadja, I. Maulana, and B. A. Dermawan, “Penerapan Metode Regresi Linear Berganda untuk Prediksi Kerugian Negara Berdasarkan Kasus Tindak Pidana Korupsi,” Journal of Applied Informatics and Computing, vol. 5, no. 1, pp. 95–102, 2021.

P. Wicaksana and M. A. I. Pakereng, “Penerapan Data Mining Untuk Prediksi Jumlah Total Porduksi Bakpao Pada PT. Estetika Tata Tiara Menggunakan Algoritma Regresi Linier Berganda,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 7, no. 1, pp. 349–359, 2023.

K. Margi and S. Pendawa, “ANALISA DAN PENERAPAN METODE SINGLE EXPONENTIAL SMOOTHING UNTUK PREDIKSI PENJUALAN PADA PERIODE TERTENTU (Studi Kasus : PT. Media Cemara Kreasi),” Pros iding SNATIF, 2015.

A. N. Maulidaniar and E. Widodo, “Perbandingan Metode Peramalan Double Exponential Smoothing dan Triple Exponential Smoothing Pada Penjualan Indihome di Wilayah Telekomunikasi Cirebon: Perbandingan Metode Peramalan Double Exponential Smoothing dan Triple Exponential Smoothing,” Emerging Statistics and Data Science Journal, vol. 1, no. 2, pp. 320–330, 2023.

L. Benedict, “Prediksi Tingkat Kematian Covid-19 di Indonesia dengan Menggunakan Metode Linear Regression,” Tangerang, 2022.

Published

2025-09-15

How to Cite

Komariah, L. ., & Arianto, D. B. (2025). PENERAPAN ALGORITMA REGRESI LINIER BERGANDA UNTUK PREDIKSI STOK BARANG DI LABORATORIUM KLINIK PROLAB MEDIKA. JURNAL ILMIAH INFORMATIKA, 13(02), 233–240. https://doi.org/10.33884/jif.v13i02.10666