SISTEM PEMANTAUAN KUALITAS AIR IKAN NILA MEDIA BIOFLOK MENGGUNAKAN ALGORITMA LSTM DAN SVM
DOI:
https://doi.org/10.33884/jif.v13i02.10762Keywords:
Biofloc, SVM, LSTM, Classification, PredictionAbstract
Tilapia farming with biofloc systems faces challenges in maintaining water quality stability due to fluctuations in temperature and pH that can affect fish health. To overcome this, this research designs an Internet of Things (IoT)-based water quality monitoring system integrated with machine learning-based prediction and classification methods. The system is built using NodeMCU ESP8266, DS18B20 (temperature), and PH-4502C (pH) sensors. Historical data from the sensors is processed using the Long Short-Term Memory (LSTM) algorithm to predict the values of water quality parameters. Next, the predicted results are classified using a Support Vector Machine (SVM) into three categories: “Air Terlalu Asam”, “Kualitas Air Baik”, dan “Air Terlalu Basa”. The classification information is then automatically sent to the farmer via the Telegram application. Model testing showed very high performance, where the LSTM prediction model achieved an R-squared value of 0.8871 with a very low error rate (MAE: 0.0115; MSE: 0.0019; RMSE: 0.0436), while the SVM classification model managed to achieve an accuracy of 99.86%. The implementation of this system is expected to assist farmers in making quick and precise decisions, reduce the risk of fish mortality, and increase time and labor efficiency in biofloc pond operations..
References
Azizah, N. F. N., Pujiharsono, H., & Afandi, M. A. (2022). Sistem pengendali suhu dan kadar pH pada kolam ikan lele berbasis IoT pada desa kutaringin kabupaten Banjarnegara. JRST (Jurnal Riset Sains Dan Teknologi), 6(1), 65. https://doi.org/10.30595/jrst.v6i1.11693
Buslim, N., Rahmatullah, I. L., Setyawan, B. A., & Alamsyah, A. (2021). Comparing Bitcoin’s Prediction Model Using GRU, RNN, and LSTM by Hyperparameter Optimization Grid Search and Random Search. 2021 9th International Conference on Cyber and IT Service Management, CITSM 2021. https://doi.org/10.1109/CITSM52892.2021.9588947
Cahyanti, Y., & Awalina, I. (2022). Studi Literatur : Pengaruh Suhu terhadap Ikan Nila (Oreochromis niloticus). Panthera : Jurnal Ilmiah Pendidikan Sains Dan Terapan, 2(4), 224–235. https://doi.org/10.36312/pjipst.v2i4.110
Hartanti, D., & Pradana, A. I. (2023). Komparasi Algoritma Machine Learning dalam Identifikasi Kualitas Air. SMARTICS Journal, 9(1), 1–6.
Hasil, J., & Bidang, P. (2022). RANCANG BANGUN SISTEM SMART KOLAM CATFISH BERBASIS MIKROKONTROLER ARDUINO UNO Nazaruddin. 8–13.
Hidayat, F., Harijanto, A., & Supriadi, B. (2022). Rancang bangun alat ukur sistem monitoring pH dan suhu kolam ikan lele berbasis IoT dengan ESP8266. Jurnal Kumparan Fisika, 5(2), 77–84. https://doi.org/10.33369/jkf.5.2.77-84
Hikmayani, Y., Yulisti, M., & Hikmah, H. (2012). Evaluasi Kebijakan Peningkatan Produksi Perikanan Budidaya. Jurnal Kebijakan Sosial Ekonomi Kelautan Dan Perikanan, 2(2), 85. https://doi.org/10.15578/jksekp.v2i2.9277
Irhamna, A., Pratama, A., Fhonna, R. P., & Ula, M. (2024). Sistem monitoring air pada kolam budidaya ikan lele berbasis Internet Of Things. Sisfo: Jurnal Ilmiah Sistem Informasi, 8(1), 65. https://doi.org/10.29103/sisfo.v8i1.18089
Jahn, T., & Jin, B. (2024). Early Stopping of Untrained Convolutional Neural Networks. SIAM Journal on Imaging Sciences , 17(4), 2331–2361. https://doi.org/10.1137/24M1636617
Lange, C. (2024). Basics of Machine Learning. Practical Machine Learning with R, May, 5–12. https://doi.org/10.1201/9781003367147-2
Marisda, D. H., & Anisa. (2019). Penerapan Teknologi Bioflok Budidaya Ikan Nila untuk Pemanfaatan Pekarangan Rumah Nonproduktif. Jurnal Pengabdian Kepada Masyarakat, 3(3), 79–84.
Nursobah, N., Salmon, S., Lailiyah, S., & Sari, S. W. (2022). Prototype sistem telemetri suhu dan pH air kolam budidaya ikan air tawar (ikan nila) berbasis internet of things (Iot). Sebatik, 26(2), 788–797. https://doi.org/10.46984/sebatik.v26i2.2053
Putri, I. R. (2023). Pemahaman Konteks dalam Pemrosesan Teks dengan Menggunakan Algoritma LSTM. December.
Savitri, L., & Nursalim, R. (2023). Klasifikasi Kualitas Air Minum menggunakan Penerapan Algoritma Machine Learning dengan Pendekatan Supervised Learning. Diophantine Journal of Mathematics and Its Applications, 2(01), 30–36. https://doi.org/10.33369/diophantine.v2i01.28260
Setiono, N. S., Utomo, Y. B., & Alfin, A. A. (2024). Implementasi Algoritma Naive Bayes Pada Sistem Monitor Kualitas Air Kolam Lele Berbasis Iot. Electro Luceat, 10(1).
Sha, J., Li, X., Zhang, M., & Wang, Z. L. (2021). Comparison of forecasting models for real‐time monitoring of water quality parameters based on hybrid deep learning neural networks. Water (Switzerland), 13(11).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH INFORMATIKA

This work is licensed under a Creative Commons Attribution 4.0 International License.