PERBANDINGAN KINERJA NAÏVE BAYES DAN SVM PADA ANALISIS SENTIMEN TWITTER IBUKOTA NUSANTARA
DOI:
https://doi.org/10.33884/jif.v12i01.8721Keywords:
Sentiment Analysis, Public Opinion Twitter, Naïve Bayes, Support Vector Machine, Capital ArchipelagoAbstract
The national capital is the center of government of a country and is often a symbol of sovereignty and national identity. The function and role of the capital city is very important in coordinating government activities, public policies and community services. This research aims to compare the effectiveness of two approaches for classification: Support Vector Machine and Naïve Bayes (SVM), in analyzing opinion sentiment towards the Indonesian capital based on Twitter data. Opinion sentiment analysis is crucial for understanding public views regarding various aspects of the Indonesian capital. The Twitter data used will involve opinions developing on social media regarding the Indonesian capital. The research methodology involves data collection, preprocessing, data sharing, Naïve Bayes and SVM model training, evaluation, and statistical analysis to compare the performance of the two models. Naïve Bayes and Support Vector Machine are the approaches employed in this study. The research results from the Naïve Bayes method present a sentiment analysis accuracy rate of 91%. The SVM method also provides a sentiment analysis accuracy rate of 94%. In light of the analysis's findings, the procedure utilizing the Support Vector Machine (SVM) method shows better results than the Naïve Bayes method in measuring sentiment towards the Indonesian capital.
References
J. Teknika, R. K. Septiani, S. Anggraeni, and S. D. Saraswati, “Klasifikasi Sentimen Terhadap Ibu Kota Nusantara (IKN) pada Media Sosial Menggunakan Naive Bayes,” Teknika, vol. 16, no. 2, pp. 245–254, 2022.
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.
A. Kartino, M. Khairul Anam, Rahmaddeni, and Junadhi, “Analisis Akun Twitter Berpengaruh terkait Covid-19 menggunakan Social Network Analysis,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 697–704, 2021, doi: 10.29207/resti.v5i4.3160.
A. F. Rahman, “Klasifikasi Tweet di Twitter dengan Menggunakan Metode K-Nearest Neighbor,” J. Sistim Inf. dan Teknol., vol. 4, pp. 64–69, 2022, doi: 10.37034/jsisfotek.v4i2.125.
A. C. Khotimah and E. Utami, “Comparison Naive Bayes Classifier, K-Nearest Neighbor, and Support Vector Machine in the classification of individual on twitter account,” J. Tek. Inform., vol. 3, no. 3, pp. 673–680, 2022.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
A. P. Natasuwarna, “Analisis Sentimen Keputusan Pemindahan Ibukota Negara Menggunakan Klasifikasi Naive Bayes,” Sensitif (Seminar Nas. Sist. Inf. dan Tek. Inform., pp. 47–53, 2019.
Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.
M. E. Lasulika, “Komparasi Naïve Bayes, Support Vector Machine Dan K-Nearest Neighbor Untuk Mengetahui Akurasi Tertinggi Pada Prediksi Kelancaran Pembayaran Tv Kabel,” Ilk. J. Ilm., vol. 11, no. 1, pp. 11–16, 2019, doi: 10.33096/ilkom.v11i1.408.11-16.
Rayuwati, Husna Gemasih, and Irma Nizar, “IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127.
A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 504–510, 2021, doi: 10.29207/resti.v5i3.3067.
D. Oktavia, Y. R. Ramadahan, and M. Minarto, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.
Y. X. Chu, X. G. Liu, and C. H. Gao, “Multiscale models on time series of silicon content in blast furnace hot metal based on Hilbert-Huang transform,” Proc. 2011 Chinese Control Decis. Conf. CCDC 2011, pp. 842–847, 2011, doi: 10.1109/CCDC.2011.5968300.
I. M. D. P. Asana and N. P. D. T. Yanti, “Sistem Klasifikasi Pengajuan Kredit Dengan Metode Support Vector Machine (SVM) I Made Dwi Putra Asana,” J. Sist. Cerdas, vol. 6, no. 2, pp. 123–133, 2023.
D. Septhya et al., “Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 15–19, 2023, doi: 10.57152/malcom.v3i1.591.
S. Y. Pangestu, Y. Astuti, and L. D. Farida, “Algoritma Support Vector Machine Untuk Klasifikasi Sikap Politik Terhadap Partai Politik Indonesia,” J. Mantik Penusa, vol. 3, no. 1, pp. 236–241, 2019.
H. Apriyani and K. Kurniati, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus,” J. Inf. Technol. Ampera, vol. 1, no. 3, pp. 133–143, 2020, doi: 10.51519/journalita.volume1.isssue3.year2020.page133-143.
W. B. Zulfikar and N. Lukman, “Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata,” J. Online Inform., vol. 1, no. 2, pp. 82–86, 2016, doi: 10.15575/join.v1i2.33.
H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.
Styawati, Andi Nurkholis, Zaenal Abidin, and Heni Sulistiani, “Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 904–910, 2021, doi: 10.29207/resti.v5i5.3380.
H. Dhery, A. Assyam, and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.
R. Slamet, W. Gata, A. Novtariany, K. Hilyati, and F. A. Jariyah, “Analisis Sentimen Twitter Terhadap Penggunaan Artis Korea Selatan Sebagai Brand Ambassador Produk Kecantikan Lokal,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 145–153, 2022, doi: 10.31539/intecoms.v5i1.3933.
Rina Noviana and Isram Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” J. Tek. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: 10.56127/jts.v2i2.791.
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.
R. Kosasih, “Penggunaan Metode Linear Discriminant Analysis Untuk Pengenalan Wajah Dengan Membandingkan Banyaknya Data Latih,” J. Ilm. Teknol. dan Rekayasa, vol. 26, no. 1, pp. 25–34, 2021, doi: 10.35760/tr.2021.v26i1.3520.
L. Qadrini, A. Sepperwali, and A. Aina, “Decision Tree Dan Adaboost Pada Klasifikasi Penerima Program Bantuan Sosial,” J. Inov. Penelit., vol. 2, no. 7, pp. 1959–1966, 2021.
W. Yulita, “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier,” J. Data Min. dan Sist. Inf., vol. 2, no. 2, p. 1, 2021, doi: 10.33365/jdmsi.v2i2.1344.
S. Lestari and S. Saepudin, “Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan Algoritma Naive Bayes,” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., pp. 163–170, 2021.
P. Della Fitriani, D. Indrawati, and A. Amie, “Upaya Meningkatkan Hasil Belajar Matematika Materi Diagram Batang melalui Model Pembelajaran Problem Based Learning pada Siswa Kelas IV SDN Sidodadi II No 579,” J. Educ., vol. 6, no. 1, pp. 985–992, 2023, doi: 10.31004/joe.v6i1.3033.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 JURNAL ILMIAH INFORMATIKA
This work is licensed under a Creative Commons Attribution 4.0 International License.