KLASIFIKASI PENYAKIT DAUN TOMAT DENGAN METODE CONVOLUTIONAL NEURAL NETWORK MENGGUNAKAN ARSITEKTUR INCEPTION-V3

Authors

  • Andi Nurdin Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Dhian Satria Yudha Kartika Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Abdul Rezha Efrat Najaf Universitas Pembangunan Nasional “Veteran” Jawa Timur

DOI:

https://doi.org/10.33884/jif.v12i02.9162

Keywords:

Daun Tomat, Convolutional, Neural Network, Klasifikasi, Inception V3

Abstract

Tomato is an important food crop in the world, including Indonesia, which often faces leaf diseases such as mosaic virus, target spot, bacterial spot, yellow leaf curl virus, late blight, leaf mold, early blight, spider mites, and septoria leaf spot. These diseases are difficult to recognize manually, so Deep Learning technology, especially Convolutional Neural Network (CNN), is used for the classification process. This research uses Inception V3 transfer learning model and image preprocessing and data augmentation. Testing is done with various optimizers (Adam, SGD, RMS Prop) to find the best model. Tests were conducted using confusion matrix to determine the level of accuracy produced by the CNN model. The results show an accuracy of 93.8% with the optimal model using Optimizer Adam.

References

Badan Pusat Statistik, “Produksi Tanaman Sayuran Menurut Provinsi dan Jenis Tanaman 2022,” Badan Pusat Statistik. Accessed: Mar. 02, 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/3/ZUhFd1JtZzJWVVpqWTJsV05XTllhVmhRSzFoNFFUMDkjMw==/produksi-tanaman-sayuran-menurut-provinsi-dan-jenis-tanaman--2022.html?year=2022

W. Pradana, “Gagal Panen, Petani di Lembang Babat Habis 25 Ribu Pohon Tomatnya,” detikNews. Accessed: Mar. 03, 2024. [Online]. Available: https://news.detik.com/berita-jawa-barat/d-5869139/gagal-panen-petani-di-lembang-babat-habis-25-ribu-pohon-tomatnya

P. Echo, “Atasi Hama yang Menyerang Tanaman Tomat Tanpa Pestisida Kimia,” Fakultas Pertanian dan Peternakan Universitas Muhammadiyah Kotabumi. Accessed: Mar. 03, 2024. [Online]. Available: https://fpp.umko.ac.id/2022/01/03/atasi-hama-yang-menyerang-tanaman-tomat-tanpa-pestisida-kimia/

B. T. Wiryanta, Bertanam Tomat , Printing 1. Jakarta: Agromedia Pustaka, 2002.

O. A. Montesinos López, A. Montesinos López, and J. Crossa, “Convolutional Neural Networks,” in Multivariate Statistical Machine Learning Methods for Genomic Prediction, O. A. Montesinos López, A. Montesinos López, and J. Crossa, Eds., Cham: Springer International Publishing, 2022, pp. 533–577. doi: 10.1007/978-3-030-89010-0_13.

M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Computation, vol. 11, no. 3. MDPI, Mar. 01, 2023. doi: 10.3390/computation11030052.

Z. Zhao, L. Alzubaidi, J. Zhang, Y. Duan, and Y. Gu, “A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations,” Expert Systems with Applications, vol. 242. Elsevier Ltd, May 15, 2024. doi: 10.1016/j.eswa.2023.122807.

J. Gupta, S. Pathak, and G. Kumar, “Deep Learning (CNN) and Transfer Learning: A Review,” in Journal of Physics: Conference Series, Institute of Physics, 2022. doi: 10.1088/1742-6596/2273/1/012029.

M. Agil Izzulhaq, “Indonesian Journal of Mathematics and Natural Sciences Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet50V2 Untuk Mengidentifikasi Penyakit Pneumonia,” 2024. [Online]. Available: https://journal.unnes.ac.id/journals/JM/index

A. Kholik, “KLASIFIKASI MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) PADA TANGKAPAN LAYAR HALAMAN INSTAGRAM,” JDMSI, vol. 2, no. 2, pp. 10–20, 2021.

D. Gunawan and H. Setiawan, “Convolutional Neural Network dalam Analisis Citra Medis,” 2022.

K. M. Ting, “Confusion Matrix,” in Encyclopedia of Machine Learning, G. I. Sammut Claude and Webb, Ed., Boston, MA: Springer US, 2010, p. 209. doi: 10.1007/978-0-387-30164-8_157.

B. Kaustubh, “Tomato leaf disease detection,” Kaggle. Accessed: Mar. 27, 2024. [Online]. Available: https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf

E. Hassan, M. Y. Shams, N. A. Hikal, and S. Elmougy, “The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study,” Multimed Tools Appl, vol. 82, no. 11, pp. 16591–16633, May 2023, doi: 10.1007/s11042-022-13820-0.

C. G. Desai and C. Desai, “Comparative Analysis of Optimizers in Deep Neural Networks,” 2020. [Online]. Available: www.ijisrt.com959

Downloads

Published

2024-09-05

How to Cite

Nurdin, A., Yudha Kartika, D. S., & Efrat Najaf , A. R. (2024). KLASIFIKASI PENYAKIT DAUN TOMAT DENGAN METODE CONVOLUTIONAL NEURAL NETWORK MENGGUNAKAN ARSITEKTUR INCEPTION-V3. JURNAL ILMIAH INFORMATIKA, 12(02), 114–119. https://doi.org/10.33884/jif.v12i02.9162