ANALISIS SENTIMEN KOMENTAR PADA POSTINGAN INSTAGRAM AKUN “STANDWITHUS” MENGGUNAKAN KLASIFIKASI NAIVE BAYES
DOI:
https://doi.org/10.33884/jif.v12i02.9263Keywords:
Sentiment Analysis, Naive Bayes, Classification, Instagram, Public Opinion, Social MediaAbstract
Social media platforms like Instagram play a crucial role in shaping public opinion and fostering community engagement in the digital age. The "StandWithUs" Instagram account, dedicated to raising awareness and advocacy, has garnered significant attention and interaction through its posts. However, understanding the sentiment behind user comments on these posts remains challenging. This study addresses this issue by employing Naive Bayes Classification to analyze the sentiment of comments on the "StandWithUs" Instagram account. The primary objective is to accurately classify comments into positive, negative, or neutral categories, providing insights into public opinion and engagement.
Our findings indicate that the Naive Bayes Classification model achieves high accuracy in sentiment identification when trained with a substantial dataset. This research highlights the effectiveness of Naive Bayes in conducting sentiment analysis on social media, underscoring its potential to enhance our understanding and management of public opinion on advocacy-related content. The implications of this study are significant, offering valuable perspectives on how social media sentiment analysis can be leveraged to gauge public reactions and involvement, ultimately contributing to more informed advocacy strategies and community engagement efforts.
By accurately interpreting the sentiments of user comments, stakeholders can better understand public perception and tailor their content and messaging strategies to foster more meaningful and positive interactions within their digital communities.
References
Analytics Vidhya (2021). "Performing Sentiment Analysis With Naive Bayes Classifier!" Retrieved from Analytics Vidhya.
Abbas, M., Memon, K. A., Jamali, A. A., Memon, S., & Ahmed, A. (2019). Multinomial Naive Bayes classification model for sentiment analysis. IJCSNS Int. J. Comput. Sci. Netw. Secur, 19(3), 62.
Tripathi, M. (2021). "Sentiment analysis of Nepali COVID-19 tweets using NB, SVM, and LSTM." Journal of Artificial Intelligence, 3(03), 51–168. DOI: 10.1007/s00146-021-01271-1.
Finandra, S., Murahartawaty, M., & Hamami, F. (2021). Penerapan Analisis Sentimen Melalui Data Instagram Untuk Mengetahui Reputasi Wisata Kuliner Di Kota Bandung Menggunakan Metode Klasifikasi NaÏve Bayes. eProceedings of Engineering, 8(5).
Engineering Proceedings (2023). "A New Approach for Carrying Out Sentiment Analysis of Social Media Comments Using Natural Language Processing." Presented at the International Conference on Recent Advances in Science and Engineering.
Pandunata, P., Ananta, C. K., & Nurdiansyah, Y. (2022). Analisis Sentimen Opini Publik Terhadap Pekan Olahraga Nasional Pada Instagram Menggunakan Metode Naïve Bayes Classififer. INFORMAL: Informatics Journal, 7(2), 146-156.
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131-145.
Efraim, D. A. (2023, December). Analisis Sentimen Pada Sosial Media Instagram Menggunakan Algoritma Naive Bayes (Studi Kasus: Timnas Futsal Indonesia). In Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya (Vol. 4, No. 2, pp. 498-509).
Nugraha, K. A. (2021). Analisis Sentimen Berbasis Emoticon pada Komentar Instagram Bahasa Indonesia Menggunakan Naïve Bayes. Jurnal Teknik Informatika dan Sistem Informasi, 7(3), 715-721.
Novira, D., & Lattu, A. (2023). ANALISIS SENTIMEN MASYARAKAT DI INSTAGRAM MENGENAI KERETA CEPAT JAKARTA-BANDUNG MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER. In Prosiding Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra (Vol. 3, pp. 142-149).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 JURNAL ILMIAH INFORMATIKA
This work is licensed under a Creative Commons Attribution 4.0 International License.