KLASIFIKASI CITRA WADAH MINUMAN REUSABLE DAN NON-REUSABLE MENGGUNAKAN MOBILENETV2
DOI:
https://doi.org/10.33884/jif.v13i02.10349Keywords:
Klasifikasi Citra, Wadah Minuman, Reusable, Computer Vision, MobileNet2Abstract
Single-use plastic waste, particularly from beverage bottles, remains a significant contributor to the increasing volume of waste in Indonesia. The limited use of reusable beverage containers underscores the urgent need for technological innovations that can support efficient waste segregation. Addressing this issue, the present study proposes a computer vision-based image classification system designed to automatically distinguish between reusable and non-reusable drinking containers. This research adopts a quantitative experimental approach, employing the MobileNetV2 architecture through transfer learning techniques. The model was trained with augmented and normalized datasets to enhance its generalization across diverse image inputs. Evaluation results demonstrate strong classification performance, achieving 96% accuracy, 99% precision (for tumblers), 95% recall, and a 97% F1-score. These outcomes indicate the effectiveness of MobileNetV2 in identifying visual patterns between container types and its potential for deployment in image-driven waste management systems.
References
D. L. Fithri, R. Setiawan, B. C. Wibowo, F. Nugraha, and N. Latifah, “Pengelolaan Bank Sampah Muria Berseri berbasis Digital Desa Gondangmanis Kabupaten Kudus,” vol. 4, no. 1, pp. 51–58, 2024.
C. Ari Rahmayani, “Efektivitas Pengendalian Sampah Plastik Untuk Mendukung Kelestarian Lingkungan Hidup Di Kota Semarang,” 2021.
N. Maulidah, R. Supriyadi, D. Y. Utami, F. N. Hasan, A. Fauzi, and A. Christian, “Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes,” Indonesian Journal on Software Engineering (IJSE), vol. 7, no. 1, pp. 63–68, 2021, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ijse63
D. Y. Utami, E. Nurlelah, and F. N. Hasan, “Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression to predict diabetes,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 5, no. 1, pp. 53–64, Jul. 2021, doi: 10.31289/jite.v5i1.5201.
S. Agustiani, R. Aryanti, S. Khotimatul Wildah, Y. T. Arifin, S. Marlina, and T. Misriati, “Optimisasi Model Deep Learning untuk Deteksi Penyakit Daun Tebu dengan Fine-Tuning MobileNetV2,” Journal of Informatics Management and Information Technology, vol. 4, no. 4, pp. 150–157, 2024, doi: 10.47065/jimat.v4i4.411.
U. Ramadhan et al., “Deteksi Sampah Botol Plastik di Perairan Menggunakan YOLO v4-Tiny,” vol. 7, no. 1, 2025, doi: 10.47233/jteksis.v5i1.1744.
Y. Ginting, K. Hantoro, A. Yunizar Pratama Yusuf, and U. Bhayangkara Jakarta Raya, “Deteksi Jenis Sampah Plastik Berbasis Mobile Menggunakan Model Transfer Learning,” 2024, doi: 10.37817/tekinfo.v25i2.
D. A. Rismayadi, M. A. Muharam, F. I. Kreatif, D. Teknik Informatika, and U. T. Bandung, “PEMANFAATAN MACHINE LEARNING UNTUK OPTIMALISASI LIMBAH DENGAN MODEL MOBILENETV2 PADA APLIKASI ANDROID,” vol. 06, 2024.
R. Theofilus and R. Kurniawan, “Deteksi Sampah di Permukaan Sungai menggunakan Convolutional Neural Network dengan Algoritma YOLOv8 Studi Kasus: Sungai Ciliwung,” 2024.
R. Muhammad, V. Pramudika, and M. Hablul Barri, “Sistem Pemilah Sampah Berbasis Deep Learning dengan Algoritma SSD-MobileNet v2,” 2024.
T. Sutisna, A. Rachmat Raharja, E. Hariyadi, and V. Hafizh Cahaya Putra, “Penggunaan Computer Vision untuk Menghitung Jumlah Kendaraan dengan Menggunakan Metode SSD (Single Shoot Detector),” INNOVATIVE: Journal Of Social Science Research, vol. 4, pp. 6060–6067, 2024.
Rohman Dijaya, Buku Ajar Pengolahan Citra Digital. 2023.
O. Saputra, D. Iskandar Mulyana, and M. B. Yel, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Senjata Tradisional Di Jawa Tengah Dengan Metode Transfer Learning,” 2022.
N. Hikmatia and M. I. Zul, “Aplikasi Penerjemah Bahasa Isyarat Indonesia menjadi Suara berbasis Android menggunakan Tensorflow,” 2021. [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/
K. Azmi, S. Defit, and U. Putra Indonesia YPTK Padang Jl Raya Lubuk Begalung-Padang-Sumatera Barat, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” vol. 16, no. 1, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH INFORMATIKA

This work is licensed under a Creative Commons Attribution 4.0 International License.