ANALISIS SENTIMEN PROGRAM MAKAN GRATIS PADA PLATFORM X MENGGUNAKAN AGORITMA NAÏVE BAYES
DOI:
https://doi.org/10.33884/jif.v13i02.10427Keywords:
Sentiment analysis, Naïve Bayes, IndoBERT, TF-IDF, Platform X, Free Meal ProgramAbstract
The Free Meal Program is one of the government’s strategic policies that has received various public responses, especially on social media Platform X (formerly Twitter). This study aims to analyze the level of public sentiment toward the Free Meal Program on Platform X. The classification method used is the Naïve Bayes algorithm, with model validation performed using the K-Fold Cross Validation technique. A total of 3,600 Indonesian-language tweets relevant to the Free Meal Program were collected through a web scraping process, followed by text preprocessing steps such as case folding, cleaning, tokenizing, stopword removal, and stemming. Data labeling was carried out semi-automatically using the IndoBERT model, and the tweets were then classified into two sentiment categories: positive and negative. The Naïve Bayes model was trained using the TF-IDF representation and tested on a test set comprising 20% of the total dataset. The evaluation results showed that the Naïve Bayes algorithm achieved an accuracy of 86.46%, precision of 86.55%, recall of 95.25%, and an F1-score of 90.77% on 458 test tweets. Validation using 10-fold cross-validation yielded an average accuracy of 86.74%. These results indicate that the Naïve Bayes algorithm demonstrates good classification performance and stable generalization in classifying public sentiment regarding the Free Meal Program. This research is expected to serve as a supporting tool in mapping public opinion based on social media
References
Aldiansyah Pratama, M., Hasan, F. N., & Pratama, M. A. (2024). Comparison of the Naïve Bayes Method and Support Vector Machine in Sentiment Analysis of Genshin Impact Game Reviews. In MECOMARE (Vol. 13, Issue 2). www.trigin.pelnus.ac.id.
Amelia Br Siregar, R., Ramadhan Manik, A., Syahri, A., Budi Akbar, M., Ramadhani, F., & Iskandar Psr V Medan Esatate Kab Deli Serdang, J.W. (2025). Penerapan Naïve Bayes Untuk Analisis Sentimen Netizen Terhadap Program Makan Siang Gratis Pada Media Social X. In Jurnal Mahasiswa Teknik Informatika) (Vol. 9, Issue 4).
Ardelia Maharani, P., Riyani Namira, A., & Viony Chairunnisa, T. (2024). Jolasos : Journal of Law and Social Society Peran Makan Siang Gratis Dalam Janji Kampanye Prabowo Gibran Dan Realisasinya.
Ardiansyah, A., Argarini Pratama, E., Imam Fadlilah, N., & Bina Sarana Informatika, U. (2024). Analisis Sentimen Pengguna Terhadap Aplikasi ChatGPT Di Google Play Store: Penerapan Algoritma Support Vector Machine. 11(2), 247–254.
Aryanti, P. G., & Santoso, I. (2023). Analisis Sentimen Pada Twitter Terhadap Mobil listrik Menggunakan Algoritma Naive Bayes.https://journals.upi yai.ac.id/index.php/ikraith-informatika/issue/archive.
Bing Liu. (2015). Sentiment Analysis Mining Opinions, Sentiments, and Emotions.
Gunawan, T. S., Ashraf, A., Riza, B. S., Haryanto, E. V., Rosnelly, R., Kartiwi, M., & Janin, Z. (2020). Development of video-based emotion recognition using deep learning with Google Colab. Telkomnika (Telecommunication Computing Electronics and Control), 18(5), 2463–2471. https://doi.org/10.12928/TELKOMNIKA.v18i5.16717.
Hasibuan, E., & Heriyanto, E. A. (2022). Analisis sentimen pada ulasan aplikasi amazon shopping di google play store menggunakan naive bayes classifier. Jts, 1(3).
Kardandi Alfarizi Siregar. (2025). Analisis Sentimen Netizen Indonesia Terhadap Kampanye Penggunaan Kecerdasan Buatan Oleh Pemerintah Menggunakan Algoritma Naïve Bayes.
Kevin Andreas Halomoan Tambunan, Ridha Nababan, Rimma Anisa Siagian, Roslin Naiborhu, Sintia Harianti, & Jamaludin Jamaludin. (2025). Tinjauan Kritis Tentang Program Makan Bergizi Gratis Terhadap Produktivitas Belajar Siswa. Katalis Pendidikan : Jurnal Ilmu Pendidikan Dan Matematika, 2(2), 21–31. https://doi.org/10.62383/katalis.v2i2.1428
Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (2020). IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP. Online. https://huggingface.co/
Mitchell, Ryan. (2024). Web scraping with Python : Data extraction from the modern web. O’reilly Media.
Putriyekti, A., Sulistiawati, D., Khairani, N., Rizky, R., Kusuma, A., Keuangan, P., & Stan, N. (2025). Analisis Multidimensional Sentimen Masyarakat Terhadap Program Makan Bergizi Gratis Pada Media Sosial X. Integrative Perspectives of Social and Science Journal, 2(1), 1004.
Reynaldi Valerian, F., Syarief, M., Abdul Fatah, D., Raya Telang, J., Kamal, K., & Timur, J. (2025). Klasifikasi tingkat obesitas menggunakan metode gbm dan confusion matrix. In Jurnal Mahasiswa Teknik Informatika) (Vol. 9, Issue 2).
Sakr, S., & Zomaya, A. Y. (2019). Encyclopedia of Big Data Technologies.
Sammut, C., & Webb, G. I. (2017). Encyclopedia of Machine Learning and Data Mining Second Edition.
Suparto, D., & Habibullah, A. (2021). Efektivitas Penggunaan Sosial Media Twitter dalam Penyebaran Informasi dalam Pelayanan Publik. Indonesian Governance Journal : Kajian Politik-Pemerintahan, 4(2), 161–172. https://doi.org/10.24905/igj.v4i2.1927.
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, & Fitri Nurapriani. (2023). Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. Jurnal KomtekInfo,1–7. https://doi.org/10.35134/komtekinfo.v10i1.330
Wijiyanto, W., Pradana, A. I., Sopingi, S., & Atina, V. (2024). Teknik K-Fold Cross Validation untuk Mengevaluasi Kinerja Mahasiswa. Jurnal Algoritma,21(1). https://doi.org/10.33364/algoritma/v.21-1.1618.
Yoga Pratama, A., Ananda Sanjaya, G., Khairunisa Lubis, N., & Rangga Aditya, M. (2025). Analisis Sentimen Publik Terkait Danantara Menggunakan Algoritma IndoBERT pada Platform Media Sosial. 9, 2025. https://doi.org/10.47002/metik.v9i1.1055.
Zheng, A. (2015). Evaluating Machine Learning Models.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH INFORMATIKA

This work is licensed under a Creative Commons Attribution 4.0 International License.