KLASIFIKASI OPINI PENONTON FILM PADA PLATFORM STREAMING VIDEO DENGAN ALGORITMA NAIVE BAYES
DOI:
https://doi.org/10.33884/comasiejournal.v13i2.10328Keywords:
Sentiment Analysis, Data Mining, Naïve Bayes, Video Streaming, Netflix DisneyAbstract
Video streaming platforms have become an essential component of contemporary society since they offer flexible access to entertainment. However, opinions about these programs are still divided, with some members of the public being more supportive than others. This study aims to categorize viewer attitudes toward video streaming services, specifically Netflix and Disney+, into three groups: good, negative, and neutral. The strategy used is the Naïve Bayes Algorithm, and web scraping techniques are used to collect user comment data from the Google Play Store. Preprocessing, data labeling, classification, and model evaluation using metrics like accuracy, precision, recall, and F1 score are all part of the analytical process.The results of the investigation showed that the Gaussian Naïve Bayes generated an accuracy of 43.52% for Disney+ and 41.99% for Netflix. This study shows that automated public opinion analysis is initially feasible, despite its current low degree of accuracy. Disney+ technically does better in classification, while Netflix gets more favorable reviews based on user assessments based on ratings. It is hoped that this research will provide the basis for more accurate opinion analysis instruments in the future.
References
Afandi, A., Noviana, N., & Nurdianah, D. (2022). Naive Bayes Method and C4.5 in Classification of Birth Data. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 16(4), 435. https://doi.org/10.22146/ijccs.78198
Al-Fajr Ramadhani, M., Aryanto, J., Hartadi Tri Untoro, I., & Sujarwadi, A. (2024). Klasifikasi Sentimen Opini terhadap Film Kartini Menggunakan Naive Bayes pada Platform X. Journal of Computer System and Informatics (JoSYC), 6(1), 223–233. https://doi.org/10.47065/josyc.v6i1.6208
Alghifari, F., & Juardi, D. (2021). Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes.
Ananda, R. A., & Nama, G. F. (2024). ANALISIS DAN PERANCANGAN LAYANAN STREAMING FILM BERBASIS WEB LANGGANAN MENGGUNAKAN FRAMEWORK NEXTJS. Jurnal Informatika Dan Teknik Elektro Terapan, 12(1). https://doi.org/10.23960/jitet.v12i1.3967
Anjani, Y., Diandra Wicaksana, M., Kuswanti, A., Pembangunan Nasional Veteran Jakarta Jl Fatmawati, U. R., Labu, P., & Selatan, J. (2023). PENGGUNAAN APLIKASI STREAMING NETFLIX PADA GENERASI Z. In Agustus (Issue 2).
Felicia Watratan, A., Puspita, A. B., Moeis, D., Informasi, S., & Profesional Makassar, S. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. In JOURNAL OF APPLIED COMPUTER SCIENCE AND TECHNOLOGY (JACOST) (Vol. 1, Issue 1). http://journal.isas.or.id/index.php/JACOST
Pebdika, A., Herdiana, R., & Solihudin, D. (2023). KLASIFIKASI MENGGUNAKAN METODE NAIVE BAYES UNTUK MENENTUKAN CALON PENERIMA PIP. In Jurnal Mahasiswa Teknik Informatika (Vol. 7, Issue 1).
Qisthiano, M. R., Kurniawan, T. B., Negara, E. S., & Akbar, M. (2021). Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(3), 987. https://doi.org/10.30865/mib.v5i3.3030
Saddyah, T. M., & Saragih, S. P. . (2024). Perancangan Ui/Ux Delivery Mobile App Dengan Metode Design Thinking Dan Usability Scale. Computer Based Information System Journal, 12(1), 39–51. Https://Doi.Org/10.33884/Cbis.V12i1.8242
Lee, J., & Saragih, S. P. . (2024). Rancang Bangun Penyaluran Jasa Asisten Rumah Tangga Berbasis Web Pada Pt Mangga Raya Makmur. Computer Based Information System Journal, 12(1), 84–99. Https://Doi.Org/10.33884/Cbis.V12i1.8341
Saragih, S. P., Darmansah, D., Arnomo , S. A. ., & Svinarky, I. . (2024). Mengembangkan Kemampuan Siswa Smk Dalam Mengembangkan Web. Puan Indonesia, 6(1), 259–268. Https://Doi.Org/10.37296/Jpi.V6i1.267
Takdirillah, R. (2020). Edumatic: Jurnal Pendidikan Informatika Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081
Wulandari, A., Mulya, A., Dermawan, T., Haiban, R. R., Tatamara, A., & Khalifah, H. D. (2024). Application of Artificial Neural Network, K-Nearest Neighbor and Naive Bayes Algorithms for Classification of Obesity Risk Cardiovascular Disease. IJATIS: Indonesian Journal of Applied Technology and Innovation Science, 1(1), 9–15. https://doi.org/10.57152/ijatis.v1i1.1095
Silalahi, M. ., & Saragih, S. P. (2022). Digitalisasi Umkm Ternak Ayam Di Masa Pandemi Covid-19 Dengan Penjualan Dan Marketing Berbasis Web. Prosiding Seminar Nasional Ilmu Sosial Dan Teknologi (Snistek), 4, 513–518. Retrieved From Https://Ejournal.Upbatam.Ac.Id/Index.Php/Prosiding/Article/View/5303
Silalahi, M., Saragih, S. P., & Yulia, Y. (2022). Sistem Informasi E-Layanan Pariwisata Kota Batam Dengan Model Waterfall. Silalahi | Jurnal Teknik Komputer. Https://Doi.Org/10.31294/Jtk.V8i2.12949
Silalahi, M., & Saragih, S. P. . (2023). Implementasi Iot Pada Sistem Pembayaran Di Koperasi Sekolah. Prosiding Seminar Nasional Ilmu Sosial Dan Teknologi (Snistek), 5, 521–526. Https://Doi.Org/10.33884/Psnistek.V5i.8128
Adhiatma, N., Ikhsan, M., Purnama, F., & Magfira, F. (2025). Implementation Of Web-Based Motorcycle Workshop Management Application To Improve Efficiency And Service Quality. Jurnal Simantec, 13(2), 181–190. Https://Doi.Org/10.21107/Simantec.V13i2.29797
Adhiatma, N., & Ikhsan, M. (2024). Implementasi E-Kasir Pada Industri Percetakan Dan Periklanan. Jurnal Simantec, 13(1), 15–24. Https://Doi.Org/10.21107/Simantec.V13i1.27974








