PREDIKSI IMPLAN GIGI MENGGUNAKAN ALGORITMA MACHINE LEARNING

Authors

  • Alisa Zebua Universitas Putera Batam
  • Koko Handoko

DOI:

https://doi.org/10.33884/comasiejournal.v13i2.10431

Keywords:

Artificial intelligence, Dental implant, Decision tree, Eligibility prediction, Medical records.

Abstract

Advances in digital technologies, particularly artificial intelligence (AI), are transforming healthcare practices, including dental implant decision-making. This study introduces a machine learning model utilizing the Classification and Regression Tree (CART) algorithm to estimate dental implant candidacy, drawing on anonymized patient records from Ellisa Dental Clinic, Batam. The dataset comprises various demographic and clinical attributes such as age, sex, smoking patterns, bone condition, and the presence of chronic illnesses including diabetes, hypertension, and autoimmune disorders. The exploratory analysis reveals that factors like heavy smoking, systemic diseases, and jawbone integrity substantially affect implant suitability. The quality and consistency of the dataset support robust modeling. The proposed system is intended to function as a clinical decision aid, offering dentists evidence-based recommendations regarding patient eligibility. This work demonstrates the potential of predictive analytics to enhance decision accuracy and streamline dental care, contributing to the integration of AI into routine clinical workflows.

 

References

Asyrofi, R. R., & Asyrofi, R. (2023). IMPLEMENTASI APLIKASI JUPYTER NOTEBOOK SEBAGAI ANALISIS KRETERIA PLAGIASI DENGAN TEKNIK SIMANTIK. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(2), 627–637. https://doi.org/10.29100/jipi.v8i2.3699

Danial, N. H., & Setiawati, D. (2024). CONVOLUTIONAL NEURAL NETWORK (CNN) BASED ON ARTIFICIAL INTELLIGENCE IN PERIODONTAL DISEASES DIAGNOSIS. Interdental Jurnal Kedokteran Gigi (IJKG), 20(1), 139–148. https://doi.org/10.46862/interdental.v20i1.8641

Handoko, K. (2025). ANALISIS PERBANDINGAN KINERJA ALGORITMA MACHINE LEARNING BERBASIS FEATURE SELECTION DALAM DETEKSI SERANGAN BOTNET. JURNAL COMASIE, 12(02).

Kartikasari Halim, A., & Poedjiastoeti, W. (2024). Penatalaksanaan Pemasangan Dental Implant pada kasus Kehilangan Gigi Posterior Tunggal. Jurnal Kedokteran Gigi Terpadu, 6(1), 39–41. https://doi.org/10.25105/jkgt.v6i1.20830

Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics, 22(1). https://doi.org/10.1186/s12910-021-00687-3

Raphael, A., & Ariesanti, Y. (2025). Perawatan Implan Gigi pada Kasus Kehilangan Satu Gigi Posterior secara Subcrestal. Jurnal Kedokteran Gigi Terpadu, 6(2), 1–5. https://doi.org/10.25105/jkgt.v6i2.22355

Siddiqui, E. F., Ahmed, T., & Nayak, S. K. (2024). A decision tree approach for enhancing real-time response in exigent healthcare unit using edge computing. Measurement: Sensors, 32, 100979. https://doi.org/10.1016/j.measen.2023.100979

Situmorang, J., & Handoko, K. (2024). IMPLEMENTASI ARTIFICIAL INTELLIGENCE DALAM APLIKASI CHATBOT SEBAGAI HELPDESK OBJEK WISATA PANTAI DI-BATAM DENGAN METODE FORWARD CHAINING. JURNAL COMASIE, 10(03).

Trenggono, P. H., & Bachtiar, A. (2023). PERAN ARTIFICIAL INTELLIGENCE DALAM PELAYANAN KESEHATAN : A SYSTEMATIC REVIEW. 7, 444–451. http://journal.universitaspahlawan.ac.id/index.php/ners

Ula, M., Anjani, F. T. T., Ulva, A. F., Sahputra, I., & Pratama, A. (2022). APPLICATION OF MACHINE LEARNING WITH THE BINARY DECISION TREE MODEL IN DETERMINING THE CLASSIFICATION OF DENTAL DISEASE. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 6(1), 170–179. https://doi.org/10.31289/jite.v6i1.7341

Saddyah, T. M., & Saragih, S. P. . (2024). Perancangan Ui/Ux Delivery Mobile App Dengan Metode Design Thinking Dan Usability Scale. Computer Based Information System Journal, 12(1), 39–51. Https://Doi.Org/10.33884/Cbis.V12i1.8242

Lee, J., & Saragih, S. P. . (2024). Rancang Bangun Penyaluran Jasa Asisten Rumah Tangga Berbasis Web Pada Pt Mangga Raya Makmur. Computer Based Information System Journal, 12(1), 84–99. Https://Doi.Org/10.33884/Cbis.V12i1.8341

Saragih, S. P., Darmansah, D., Arnomo , S. A. ., & Svinarky, I. . (2024). Mengembangkan Kemampuan Siswa Smk Dalam Mengembangkan Web. Puan Indonesia, 6(1), 259–268. Https://Doi.Org/10.37296/Jpi.V6i1.267

Wardhana, R. G., Wang, G., & Sibuea, F. (2023). PENERAPAN MACHINE LEARNING DALAM PREDIKSI TINGKAT KASUS PENYAKIT DI INDONESIA. In Journal of Information System Management (JOISM) e-ISSN (Vol. 5, Issue 1).

Adhiatma, N., Ikhsan, M., Purnama, F., & Magfira, F. (2025). Implementation Of Web-Based Motorcycle Workshop Management Application To Improve Efficiency And Service Quality. Jurnal Simantec, 13(2), 181–190. Https://Doi.Org/10.21107/Simantec.V13i2.29797

Adhiatma, N., & Ikhsan, M. (2024). Implementasi E-Kasir Pada Industri Percetakan Dan Periklanan. Jurnal Simantec, 13(1), 15–24. Https://Doi.Org/10.21107/Simantec.V13i1.27974

Downloads

Published

2025-11-14

How to Cite

Zebua, A., & Handoko, K. (2025). PREDIKSI IMPLAN GIGI MENGGUNAKAN ALGORITMA MACHINE LEARNING. Computer and Science Industrial Engineering (COMASIE), 13(2), 99–108. https://doi.org/10.33884/comasiejournal.v13i2.10431