IMPLEMENTASI DATA MINING PADA MENGGUNAKAN METODE FP GROWTH ASSOCIATION RULE PADA DATA TRANSAKSI PENJUALAN
DOI:
https://doi.org/10.33884/comasiejournal.v10i2.8463Keywords:
FP-Growth, Association Rule, Data Mining, RadpiMinerAbstract
This research focuses on optimizing sales and inventory management for "Gudang Computer" company through the implementation of the FP-Growth method in data mining. Despite operating since October 2020, the company faces challenges in managing sales transactions and inventory. Analysis of transaction data from January to December 2022 resulted in two itemsets, namely TV4G and MWK, meeting the minimum requirements of 20% support and 70% confidence. With these findings, the research demonstrates that if customers purchase TV4G, there is a high likelihood they will also purchase a Mouse Wireless Keyboard. This discovery is expected to assist "Gudang Computer" in operating more efficiently by formulating more targeted sales strategies.
References
AHMAD ADRI. (2021). Implementasi Data Mining Menggunakan Algoritma Apriori. Paper Knowledge. Toward a Media History of Documents, 6(2), 1–77.
Antari, N. M. D., Agustini, K., & Divayana, D. G. H. (2016). Studi Komparatif Model Pembelajaran Talking Stick Dan Snowball Throwing Terhadap Hasil Belajar Teknologi Informasi Dan Komunikasi (Tik) Siswa Kelas Xi Sma Negeri 1 Seririt Tahun Ajaran 2015/2016. Jurnal Pendidikan Teknologi Dan Kejuruan, 13(2), 127–136. https://doi.org/10.23887/jptk.v13i2.8521
Ashma Nurmeila, S., Witanti, W., & Sabrina Nurul, P. (2020). Segmentasi Pelanggan Berdasarkan Keluhan dengan Menggunakan K-Means Cluster Analysis pada PT Infomedia Nusantara. Prosiding Seminar Nasional Sistem Informasi Dan Teknologi (SISFOTEK), 276–280.
Bunda, Y. P. (2020). Algoritma FP-Growth Untuk Menganalisa Pola Pembelian Oleh-Oleh (Studi Kasus Di Pusat Oleh-Oleh Ummi Aufa Hakim). Riau Journal of Computer Science, 06(01), 34–44.
Butar, M. S. B., & Elisa, E. (2022). Rules Association FP-Growth Dalam Analisis Keranjang Pasar. Comasie, 6(2), 127–136.
Dogan, A., & Birant, D. (2021). Machine learning and Data Mining in manufacturing. Expert Systems with Applications, 166, 114060. https://doi.org/10.1016/J.ESWA.2020.114060
Fajrin, A. A., & Handoko, K. (2018a). Penerapan Data Mining Untuk Mengolah Association Rule Tata Letak Buku Dengan Metode. Jurnal Ilmiah Informatika (JIF), 2, 60–65.
Fajrin, A. A., & Handoko, K. (2018b). Penerapan Data Mining Untuk Mengolah Association Rule Tata Letak Buku Dengan Metode. Jurnal Ilmiah Informatika (JIF), 2, 60–65.
Hamid Mughal, M. J. (2018). Data Mining: Web Data Mining techniques, tools and algorithms: An overview. International Journal of Advanced Computer Science and Applications, 9(6), 208–215. https://doi.org/10.14569/IJACSA.2018.090630
Kumar, S., & Mohbey, K. K. (2022). A review on big data based parallel and distributed approaches of pattern Mining. Journal of King Saud University - Computer and Information Sciences, 34(5), 1639–1662. https://doi.org/10.1016/j.jksuci.2019.09.006
Kurnia, Y., Isharianto, Y., Giap, Y. C., Hermawan, A., & Riki. (2019). Study of application of Data Mining market basket analysis for knowing sales pattern (Association of items) at the O! Fish restaurant using apriori algorithm. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012047
Prasetya, A., Andriana, S., & Komalasari, R. T. (2021). Rancang Bangun Inventarisasi Barang menggunakan Algoritma Apriori Sebagai Data Mining. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 5(4), 354. https://doi.org/10.35870/jtik.v5i4.223
Simanjuntak, P., & Elisa, E. (2019). Data Mining Untuk Menentukan Pemilihan Celular Card Di Kota Batam. Journal Information System …, 4(2), 1–5. https://ejournal.medan.uph.edu/index.php/isd/article/view/283%0Ahttps://ejournal.medan.uph.edu/index.php/isd/article/download/283/143
Simanjuntak, P., Suharyanto, C. E., Sitohang, S., & Handoko, K. (2022). Data Mining Untuk Klasifikasi Status Pandemi Covid 19. Jurnal Teknik Informasi Dan Komputer (Tekinkom), 5(2), 327. https://doi.org/10.37600/tekinkom.v5i2.620