IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI PENGARUH MEDIA SOSIAL TERHADAP SEMANGAT BELAJAR ANAK
DOI:
https://doi.org/10.33884/comasiejournal.v11i2.9046Keywords:
Data Mining, Naïve Bayes, RapidMiner, Learning Enthusiasm, Social MediaAbstract
In the digital era, the internet has become essential to daily life for all age groups, including children. Social media platforms like WhatsApp, YouTube, and TikTok are now integral to daily life, serving communication, news dissemination, entertainment, and promotional purposes. However, excessive use can lead to addiction and negatively impact learning, especially among children at the Al-Ikhlas Orphanage. This study employs data mining with the Naïve Bayes algorithm to analyze survey data on social media usage and its impact on learning enthusiasm. Naïve Bayes was selected for its high classification and prediction accuracy. Using RapidMiner software, the study found that social media significantly influences children's learning enthusiasm, achieving an accuracy rate of 85%. For the "strongly agree" class, precision is 92.86% and recall is 86.67%, while for the "disagree" class, precision is 66.67% and recall is 80.00%. The results indicate a significant influence of social media on children's learning enthusiasm.
References
Adrian, T., & Suarna, N. (2023). Implementation of Data Mining To Classify Madrasah Graduation Results Using the Naive Bayes Algorithm Implementasi Data Mining Untuk Mengklasifikasi Hasil Kelulusan Madrasah Menggunakan Algoritma Naive Bayes. Journal of Scientech Research and Development, 5(2), 1142–1160. https://idm.or.id/JSCR/in
Juanda Saputra, M., & Izman Herdiansyah, M. (2022). Penerapan Naive Bayes Dalam Memprediksi Penjualan Dan Persediaan Kain Jumputan Pada Toko Batiq Colet Tuan Kentang Palembang. Jurnal Mantik, 6(2), 2502–2507.
Siahaan, A. E., & Fauzi, R. (2023). IMPLEMENTASI DATA MINING DALAM PREDIKSI KEPUASAN BELAJAR SAAT PANDEMIC COVID MENGGUNAKAN ALGORITMA C 4.5. JURNAL COMASIE.
Simanjuntak, P., Sitohang, S., Handoko, K., & Eko, Cosmas, S. (2022). Data Mining Untuk Klasifikasi Status Pandemi Covid 19. Jurnal Teknik Informasi Dan Komputer (Tekinkom), 5(2), 327. https://doi.org/10.37600/tekinkom.v5i2.620
Sudarto, P. P., & Handoko, K. (2023). IMPLEMENTASI DATA MINING PADA PENGATURAN DATA INVOICE DISTRIBUTOR MENGGUNAKAN ALGORITMA FP GROWTH. JURNAL COMASIE.
Saragih, S. P. (2024). Desain Sistem Informasi Penyaluran Tenaga Kerja (studi kasus: PT. xyz Penyalur Asisten Rumah Tangga). Jurnal Desain Dan Analisis Teknologi, 3(2), 163–168. https://doi.org/10.58520/jddat.v3i2.65
Saragih, S. P., Gaol, I. L. S. L., Sihotang, S. J., & Banjarnahor, T. (2018). Optimasi Aplikasi Media Sosial dan Digital Content Editing untuk Mendukung Promosi Wisata Digital kepada Masyarakat Pulau Setokok. J-ABDIPAMAS (Jurnal Pengabdian Kepada Masyarakat), 2(2), 101. https://doi.org/10.30734/j-abdipamas.v2i2.284
Yulita, W., Dwi Nugroho, E., Habib Algifari, M., Studi Teknik Informatika, P., Teknologi Sumatera, I., Terusan Ryacudu, J., Huwi, W., Agung, J., & Selatan, L. (2021). Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier. JDMSI, 2(2), 1–9.
Zulfikar, W. B., Atmadja, A. R., & Pratama, S. F. (2023). Sentiment Analysis on Social Media Against Public Policy Using Multinomial Naive Bayes. Scientific Journal of Informatics, 10(1), 25–34. https://doi.org/10.15294/sji.v10i1.39952