Metode Naive Bayes Classifier untuk Analisis Sentimen Studi Kasus Mega Wisata Coastarina Batam

Authors

  • Mayada Dwi Andini Universitas Putera Batam
  • Rika Harman

DOI:

https://doi.org/10.33884/comasiejournal.v10i3.8531

Keywords:

Sentiment Analysis, Google Reviews, Naïve Bayes, RapidMiner

Abstract

Tourism is one of the destinations for tourists to visit a city. Usually, to visit a tourist spot, individuals check the ratings of the place through Google reviews. In addition to ratings, some people also read reviews to assess the quality of the tourist spot. However, if the reviews given do not match the rating, there is a need for sentiment analysis to identify positive and negative reviews. This study takes a case study from Batam city, namely Mega Wisata Coastarina Batam. The method used in this research is Naive Bayes. Naive Bayes is chosen for its popularity in classification methods with good accuracy. Based on the research results, there are more positive sentiments than negative sentiments, namely 200 positive sentiments and 141 negative sentiments. The testing results of the research show the performance of sentiment analysis using the Naive Bayes method, with an F1-score accuracy of 69.49% and a margin of error of +-7.67%. The precision is 71.00% in positive predictions and 67.39% in negative predictions. The recall value is 75.53% for positive predictions and 62.09% for negative predictions. The F1-score results are 86.06% for positive predictions and 64.63% for negative predictions.

References

ADMINLP2M. (2022). Analisis Sentimen (Sentiment Analysis) : Definisi, Tipe dan Cara Kerjanya. Retrieved August 12, 2023, from https://lp2m.uma.ac.id/2022/02/21/analisis-sentimen-sentiment-analysis-definisi-tipe-dan-cara-kerjanya/

Apriani, R., & Gustian, D. (2019). Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia. Jurnal Rekayasa Teknologi Nusa Putra, 6(1), 54–62. Retrieved from https://rekayasa.nusaputra.ac.id/article/view/86

Samsir, Ambiyar, Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentiman Pembelajaran Daring pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naive Bayes. Jurnal Media Informatika Budidarma, 5(1), 149. https://doi.org/10.30865/mib.v5i1.2604

Ariyanti, D., & Iswardani, K. (2020). Teks Mining untuk Klasifikasi Keluhan Masyarakat Pada Pemkot Probolinggo Menggunakan Algoritma Naïve Bayes. Jurnal IKRA-ITH Informatika, 4(3), 125–132.

Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan Metode Naive Bayes dan Support Vector Machine pada Analisis Twitter. SMATIKA Jurnal: STIKI Informatika Jurnal, 10(2), 71–76.

Novianti, D. (2019). Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner. Paradigma - Jurnal Komputer Dan Informatika Akademi Bina Saran Informatika, 21(1), 49–54. https://doi.org/10.31294/p.v21i1.4979

Downloads

Published

2024-12-19

How to Cite

Andini, M. D., & Rika Harman. (2024). Metode Naive Bayes Classifier untuk Analisis Sentimen Studi Kasus Mega Wisata Coastarina Batam. Computer and Science Industrial Engineering (COMASIE), 10(3), 99–108. https://doi.org/10.33884/comasiejournal.v10i3.8531

Issue

Section

Articles