ANALISIS SENTIMEN KEPUASAN PELANGGAN TRANSPORTASI ONLINE PADA GRAB MENGGUNAKAN SUPPORT VERCTOR MACHINE
DOI:
https://doi.org/10.33884/comasiejournal.v13i2.10452Kata Kunci:
Sentiment Analysis, Grab, User Riview, Support Vector Machine, TF-IDFAbstrak
Online transportation services such as Grab have become an essential part of urban mobility in Indonesia, generating a wide range of user reviews that reflect levels of satisfaction. This study aims to analyze the sentiment of these reviews using the Support Vector Machine (SVM) algorithm. Data were collected from the Google Play Store and processed through several stages, including text preprocessing, automatic labeling based on rating scores (≤3 as negative, ≥4 as positive), and feature representation using the Term Frequency–Inverse Document Frequency (TF-IDF) method. The dataset was split into training data (80%) and testing data (20%), and the SVM model was trained using a linear kernel. Evaluation results showed an accuracy of 82%, precision of 84%, recall of 78%, F1-score of 79%, and an AUC of 0.9015. Further analysis of negative reviews revealed that the aspects of “drivers,” “application,” and “payment” were the main sources of complaints. These findings demonstrate the effectiveness of SVM in sentiment classification and its potential as a data-driven service evaluation tool. The study also recommends manual labeling or semantic-based approaches to address inconsistencies between review scores and content.
Referensi
Diana, R., Warni, H., & Sutabri, T. (2023). Penggunaan Teknologi Machine Learning Untuk Pelayanan Monitoring Kegiatan Belajar Mengajar Pada Smk Bina Sriwijaya Palembang. JUTEKIN (Jurnal Teknik Informatika), 11(1). https://doi.org/10.51530/jutekin.v11i1.709
Saddyah, T. M., & Saragih, S. P. . (2024). Perancangan Ui/Ux Delivery Mobile App Dengan Metode Design Thinking Dan Usability Scale. Computer Based Information System Journal, 12(1), 39–51. Https://Doi.Org/10.33884/Cbis.V12i1.8242
Lee, J., & Saragih, S. P. . (2024). Rancang Bangun Penyaluran Jasa Asisten Rumah Tangga Berbasis Web Pada Pt Mangga Raya Makmur. Computer Based Information System Journal, 12(1), 84–99. Https://Doi.Org/10.33884/Cbis.V12i1.8341
Junellson, & Sitohang, S. (2024). Responsive Web Design Menggunakan Bootstrap Dalam Merancang Layout Orderan Makanan. Jurnal Comasie, 10(1).
Laksono, U., & Suryono, R. (2025). SENTIMENT ANALYSIS OF ONLINE DATING APPS USING SUPPORT VECTOR MACHINE AND NAÏVE BAYES ALGORITHMS. Jurnal Teknik Informatika (Jutif), 6, 229–238. https://doi.org/10.52436/1.jutif.2025.6.1.2105
Manullang, O., & Prianto, C. (2023). Analisis Sentimen dalam Memprediksi Hasil Pemilu Presiden dan Wakil Presiden : Systematic Literature Review. Jurnal Informatika Dan Teknologi Komputer ( J-ICOM), 4(2), 104–113. https://doi.org/10.55377/j-icom.v4i2.7723
Sitohang, A. W. S. R. G. S. (2021). Penerapan Data Mining Dalam Pemilihan Laptop Menggunakan Metode Algoritma C4.5. Jurnal Comasie, 5, 63–70.
Saragih, S. P., Darmansah, D., Arnomo , S. A. ., & Svinarky, I. . (2024). Mengembangkan Kemampuan Siswa Smk Dalam Mengembangkan Web. Puan Indonesia, 6(1), 259–268. Https://Doi.Org/10.37296/Jpi.V6i1.267
Saragih, S. P. ., & Svinarky, I. . (2025). Perancangan Sistem Informasi Enterprise Resource Planning Dan Manajemen Legalitas Usaha Pada Toko Retail Kecil. Jurnal Desain Dan Analisis Teknologi, 4(1), 60–66. Https://Doi.Org/10.58520/Jddat.V4i1.75
Styawati, S., Hendrastuty, N., & Isnain, A. R. (2021). Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 150–155. https://doi.org/10.30591/jpit.v6i3.2870
Adhiatma, N., Ikhsan, M., Purnama, F., & Magfira, F. (2025). Implementation Of Web-Based Motorcycle Workshop Management Application To Improve Efficiency And Service Quality. Jurnal Simantec, 13(2), 181–190. Https://Doi.Org/10.21107/Simantec.V13i2.29797
Adhiatma, N., & Ikhsan, M. (2024). Implementasi E-Kasir Pada Industri Percetakan Dan Periklanan. Jurnal Simantec, 13(1), 15–24. Https://Doi.Org/10.21107/Simantec.V13i1.27974
Tri Putra, K., Amin Hariyadi, M., & Crysdian, C. (2023). Perbandingan Feature Extraction Tf-Idf Dan Bow Untuk Analisis Sentimen Berbasis Svm. Jurnal Cahaya MAndalika, 1449.
Wahyudi, R., & Kusumawardana, G. (2021). Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine. Jurnal Informatika, 8(2), 200–207. https://doi.org/10.31294/ji.v8i2.9681








