DATA MINING ANALISIS HASIL PRODUKSI PT.SIMATELEX MANUFACTORY BATAM MENGGUNAKAN ALGORITMA APRIORI
Kata Kunci:
DATA MININGAbstrak
Data mining, also known as Knowledge Discovery in Databases, or KDD, is the process of attempting to extract valuable knowledge and information from very big databases. The A priori algorithm is one of the most often used algorithms in data mining approaches. Conversely, association rules are employed in the identification of combinations of associations between item-sets. Data mining has been used in a variety of industries, including telecommunications, education, and business or trade. Results from the application of data mining utilizing A priori algorithms, for instance, might assist businesses in making decisions regarding inventory policies. As an illustration, consider the value of an organization's inventory system and the top priorities for stocking up on to prevent product shortages. Because customers' opinions and a company's bottom line may be impacted by a shortage of inventory. As a result, a company's capacity to supply a variety of production product types is essential to ensuring that its customers receive their orders without delay and that its marketing efforts are successful. In addition to the aforementioned issues, data mining can develop a smart business environment to prepare the company for the future's fierce business competition.
Referensi
Aras, Z., & Sardjono. (2016). Analisis Data Mining Untuk Menentukan Kelompok Prioritas Penerima Bantuan Bedah Rumah Menggunakan Metode Clustering K-Means( Studi Kasus: Kantor Kecamatan Bahar Utara). Jurnal Manajemen Sistem Informasi, 1(2), 159–170.
Ardiada, D., Ariawan, P. A., & Sudarma, M. (2018). Evaluation of Supporting Work Quality Using K-Means Algorithm. IJEET International Journal of Engineering and Emerging Technology, 3(1), 52–55.
Azwanti, N. (2019). Combination, Pola, Apriori ANALISIS POLA BELANJA KONSUMEN MENGGUNAKAN ALGORITMA APRIORI PADA RAFFA PHOTOCOPY. Jurnal Teknologi Dan Open Source, 2(2), 63–73. https://doi.org/10.36378/jtos.v2i2.348
Elisa, E. (2017). Analisa dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Mengidentifikasi Faktor-Faktor Penyebab Kecelakaan Kerja Kontruksi PT. Arupadhatu Adisesanti. Jurnal Online Informatika, 2(1), 36. https://doi.org/10.15575/join.v2i1.71
Elisa, E. (2018). Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2(2), 472–478. https://doi.org/10.29207/resti.v2i2.280
Gustientiedina, G., Adiya, M. H., & Desnelita, Y. (2019a). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 17–24. https://doi.org/10.25077/teknosi.v5i1.2019.17-24
Gustientiedina, G., Adiya, M. H., & Desnelita, Y. (2019b). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 17–24. https://doi.org/10.25077/teknosi.v5i1.2019.17-24
Handoko, K., & Sabda Lesmana, L. (2018). Computer Based Information System Journal PENGELOMPOKKAN DATA MINING PADA JUMLAH PENUMPANG DI BANDARA HANG NADIM INFORMASI ARTIKEL KATA KUNCI. CBIS JOURNAL. http://ejournal.upbatam.ac.id/index.php/cbis
Mardalius, M. (2018). Pemanfaatan Rapid Miner Studio 8.2 Untuk Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means. Jurteksi, 4(2), 123–132. https://doi.org/10.33330/jurteksi.v4i2.36
Rao, S., & Gupta, P. (2012). Implementing Improved Algorithm Over APRIORI Data Mining Association Rule Algorithm. International Journal of Computer Science and Technology, 3(1), 489–493. http://www.ijcst.com/vol31/3/sanjeev.pdf
Waworuntu, M. N. V., & Amin, M. F. (2018). Penerapan Metode K-Means Untuk Pemetaan Calon Penerima Jamkesda. Klik - Kumpulan Jurnal Ilmu Komputer, 5(2), 190. https://doi.org/https://doi.org/10.20527/klik.v5i2.157